193 research outputs found

    Microwave enhanced ion-cut silicon layer transfer

    Get PDF
    Microwave heating has been used to decrease the time required for exfoliation of thin single-crystalline silicon layers onto insulator substrates using ion-cut processing. Samples exfoliated in a 2.45 GHz, 1300 W cavity applicator microwave system saw a decrease in incubation times as compared to conventional anneal processes. Rutherford backscattering spectrometry, cross sectional scanning electron microscopy, cross sectional transmission electron microscopy, and selective aperture electron diffraction were used to determine the transferred layer thickness and crystalline quality. The surface quality was determined by atomic force microscopy. Hall measurements were used to determine electrical properties as a function of radiation repair anneal times. Results of physical and electrical characterizations demonstrate that the end products of microwave enhanced ion-cut processing do not appreciably differ from those using more traditional means of exfoliation. © 2007 American Institute of Physics

    Effect of substrate growth temperatures on H diffusion in hydrogenated Si/Si homoepitaxial structures grown by molecular beam epitaxy

    Get PDF
    We have investigated hydrogen diffusion in hydrogenated 〈100〉 Si/Si homoepitaxial structures, which were grown by molecular beam epitaxy at various temperatures. The substrate growth temperature can significantly affect the H diffusion behavior, with higher growth temperatures resulting in deeper H diffusion. For the Si/Si structure grown at the highest temperature of 800°C, H trapping occurs at the epitaxial Si/Si substrate interface, which results in the formation of (100) oriented microcracks at the interface. The mechanism of H trapping and the potential application of these findings for the development of a method of transferring ultrathin Si layers are discussed. © 2006 American Institute of Physics

    Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation

    Get PDF
    We have developed an innovative approach without the use of ion implantation to transfer a high-quality thin Si layer for the fabrication of silicon-on-insulator wafers. The technique uses a buried strained SiGe layer, a few nanometers in thickness, to provide H trapping centers. In conjunction with H plasma hydrogenation, lift-off of the top Si layer can be realized with cleavage occurring at the depth of the strained SiGe layer. This technique avoids irradiation damage within the top Si layer that typically results from ion implantation used to create H trapping regions in the conventional ion-cut method. We explain the strain-facilitated layer transfer as being due to preferential vacancy aggregation within the strained layer and subsequent trapping of hydrogen, which lead to cracking in a well controlled manner. © 2005 American Institute of Physics

    H-induced platelet and crack formation in hydrogenated epitaxial Si/Si <inf>0.98</inf>B <inf>0.02</inf>/Si structures

    Get PDF
    An approach to transfer a high-quality Si layer for the fabrication of silicon-on-insulator wafers has been proposed based on the investigation of platelet and crack formation in hydrogenated epitaxial Si Si0.98 B0.02 Si structures grown by molecular-beam epitaxy. H-related defect formation during hydrogenation was found to be very sensitive to the thickness of the buried Si0.98 B0.02 layer. For hydrogenated Si containing a 130 nm thick Si0.98 B0.02 layer, no platelets or cracking were observed in the B-doped region. Upon reducing the thickness of the buried Si0.98 B0.02 layer to 3 nm, localized continuous cracking was observed along the interface between the Si and the B-doped layers. In the latter case, the strains at the interface are believed to facilitate the (100)-oriented platelet formation and (100)-oriented crack propagation. © 2006 American Institute of Physics

    Automated inter-rater reliability assessment and electronic data collection in a multi-center breast cancer study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The choice between paper data collection methods and electronic data collection (EDC) methods has become a key question for clinical researchers. There remains a need to examine potential benefits, efficiencies, and innovations associated with an EDC system in a multi-center medical record review study.</p> <p>Methods</p> <p>A computer-based automated menu-driven system with 658 data fields was developed for a cohort study of women aged 65 years or older, diagnosed with invasive histologically confirmed primary breast cancer (N = 1859), at 6 Cancer Research Network sites. Medical record review with direct data entry into the EDC system was implemented. An inter-rater and intra-rater reliability (IRR) system was developed using a modified version of the EDC.</p> <p>Results</p> <p>Automation of EDC accelerated the flow of study information and resulted in an efficient data collection process. Data collection time was reduced by approximately four months compared to the project schedule and funded time available for manuscript preparation increased by 12 months. In addition, an innovative modified version of the EDC permitted an automated evaluation of inter-rater and intra-rater reliability across six data collection sites.</p> <p>Conclusion</p> <p>Automated EDC is a powerful tool for research efficiency and innovation, especially when multiple data collection sites are involved.</p

    Inverse magnetic catalysis in dense holographic matter

    Full text link
    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition into the lowest Landau level. We estimate IMC to persist up to 10^{19} G at low temperatures.Comment: 42 pages, 11 figures, v3: extended discussion; new appendix D; references added; version to appear in JHE

    Chiral perturbation theory in a magnetic background - finite-temperature effects

    Full text link
    We consider chiral perturbation theory for SU(2) at finite temperature TT in a constant magnetic background BB. We compute the thermal mass of the pions and the pion decay constant to leading order in chiral perturbation theory in the presence of the magnetic field. The magnetic field gives rise to a splitting between Mπ0M_{\pi^0} and Mπ±M_{\pi^{\pm}} as well as between Fπ0F_{\pi^0} and Fπ±F_{\pi^{\pm}}. We also calculate the free energy and the quark condensate to next-to-leading order in chiral perturbation theory. Both the pion decay constants and the quark condensate are decreasing slower as a function of temperature as compared to the case with vanishing magnetic field. The latter result suggests that the critical temperature TcT_c for the chiral transition is larger in the presence of a constant magnetic field. The increase of TcT_c as a function of BB is in agreement with most model calculations but in disagreement with recent lattice calculations.Comment: 24 pages and 9 fig

    A web-based Alcohol Clinical Training (ACT) curriculum: Is in-person faculty development necessary to affect teaching?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physicians receive little education about unhealthy alcohol use and as a result patients often do not receive efficacious interventions. The objective of this study is to evaluate whether a free web-based alcohol curriculum would be used by physician educators and whether in-person faculty development would increase its use, confidence in teaching and teaching itself.</p> <p>Methods</p> <p>Subjects were physician educators who applied to attend a workshop on the use of a web-based curriculum about alcohol screening and brief intervention and cross-cultural efficacy. All physicians were provided the curriculum web address. Intervention subjects attended a 3-hour workshop including demonstration of the website, modeling of teaching, and development of a plan for using the curriculum. All subjects completed a survey prior to and 3 months after the workshop.</p> <p>Results</p> <p>Of 20 intervention and 13 control subjects, 19 (95%) and 10 (77%), respectively, completed follow-up. Compared to controls, intervention subjects had greater increases in confidence in teaching alcohol screening, and in the frequency of two teaching practices – teaching about screening and eliciting patient health beliefs. Teaching confidence and teaching practices improved significantly in 9 of 10 comparisons for intervention, and in 0 comparisons for control subjects. At follow-up 79% of intervention but only 50% of control subjects reported using any part of the curriculum (p = 0.20).</p> <p>Conclusion</p> <p>In-person training for physician educators on the use of a web-based alcohol curriculum can increase teaching confidence and practices. Although the web is frequently used for disemination, in-person training may be preferable to effect widespread teaching of clinical skills like alcohol screening and brief intervention.</p

    Joint multi-field T1 quantification for fast field-cycling MRI

    Get PDF
    Acknowledgment This article is based upon work from COST Action CA15209, supported by COST (European Cooperation in Science and Technology). Oliver Maier is a Recipient of a DOC Fellowship (24966) of the Austrian Academy of Sciences at the Institute of Medical Engineering at TU Graz. The authors would like to acknowledge the NVIDIA Corporation Hardware grant support.Peer reviewedPublisher PD
    • 

    corecore