14 research outputs found

    Development of Macrocyclic Peptidomimetics Containing Constrained α,α-Dialkylated Amino Acids with Potent and Selective Activity at Human Melanocortin Receptors

    No full text
    We report the development of macrocyclic melanocortin derivatives of MT-II and SHU-9119, achieved by modifying the cycle dimension and incorporating constrained amino acids in ring-closing. This study culminated in the discovery of novel agonists/antagonists with an unprecedented activity profile by adding pieces to the puzzle of the melanocortin receptor selectivity. Finally, the resulting 19- and 20-membered rings represent a suitable frame for the design of further therapeutic ligands as selective modulators of the melanocortin system

    Development of Macrocyclic Peptidomimetics Containing Constrained α,α-Dialkylated Amino Acids with Potent and Selective Activity at Human Melanocortin Receptors

    No full text
    We report the development of macrocyclic melanocortin derivatives of MT-II and SHU-9119, achieved by modifying the cycle dimension and incorporating constrained amino acids in ring-closing. This study culminated in the discovery of novel agonists/antagonists with an unprecedented activity profile by adding pieces to the puzzle of the melanocortin receptor selectivity. Finally, the resulting 19- and 20-membered rings represent a suitable frame for the design of further therapeutic ligands as selective modulators of the melanocortin system

    Ligand-Based NMR Study of C‑X‑C Chemokine Receptor Type 4 (CXCR4)–Ligand Interactions on Living Cancer Cells

    No full text
    Peptide-binding G protein-coupled receptors (GPCRs) are key effectors in numerous pathological and physiological pathways. The assessment of the receptor-bound conformation of a peptidic ligand within a membrane receptor such as a GPCR is of great impact for a rational drug design of more potent analogues. In this work, we applied multiple ligand-based nuclear magnetic resonance (NMR) methods to study the interaction of peptide heptamers, derived from the C-X-C Motif Chemokine 12 (CXCL12), and the C-X-C Chemokine Receptor Type 4 (CXCR4) on membranes of human T-Leukemia cells (CCRF-CEM cells). This study represents the first structural investigation reporting the receptor-bound conformation of a peptide to a GPCR directly on a living cell. The results obtained in the field of CXCL12/CXCR4 are proofs of concept, although important information for researchers dealing with the CXCR4 field arises. General application of the presented NMR methodologies is possible and surely may help to boost the development of new therapeutic agents targeting GPCRs

    Development of Macrocyclic Peptidomimetics Containing Constrained α,α-Dialkylated Amino Acids with Potent and Selective Activity at Human Melanocortin Receptors

    No full text
    We report the development of macrocyclic melanocortin derivatives of MT-II and SHU-9119, achieved by modifying the cycle dimension and incorporating constrained amino acids in ring-closing. This study culminated in the discovery of novel agonists/antagonists with an unprecedented activity profile by adding pieces to the puzzle of the melanocortin receptor selectivity. Finally, the resulting 19- and 20-membered rings represent a suitable frame for the design of further therapeutic ligands as selective modulators of the melanocortin system

    Designed Glucopeptides Mimetics of Myelin Protein Epitopes As Synthetic Probes for the Detection of Autoantibodies, Biomarkers of Multiple Sclerosis

    No full text
    We previously reported that CSF114­(Glc) detects diagnostic autoantibodies in multiple sclerosis sera. We report herein a bioinformatic analysis of myelin proteins and CSF114­(Glc), which led to the identification of five sequences. These glucopeptides were synthesized and tested in enzymatic assays, showing a common minimal epitope. Starting from that, we designed an optimized sequence, SP077, showing a higher homology with both CSF114­(Glc) and the five sequences selected using the bioinformatic approach. SP077 was synthesized and tested on 50 multiple sclerosis patients’ sera, and was able to detect higher antibody titers as compared to CSF114­(Glc). Finally, the conformational properties of SP077 were studied by NMR spectroscopy and structure calculations. Thus, the immunological activity of SP077 in the recognition of specific autoantibodies in multiple sclerosis patients’ sera may be ascribed to both the optimized design of its epitopic region and the superior surface interacting properties of its C-terminal region

    New Anticancer Agents Mimicking Protein Recognition Motifs

    No full text
    The novel tetrasubstituted pyrrole derivatives <b>8g</b>, <b>8h</b>, and <b>8i</b> showed selective cytotoxicity against M14 melanoma cells at low micromolar concentration. Structure–activity relationships (SARs) indicated the presence of three aromatic substituents on the pyrrole core as necessary for biological activity. Computational studies strongly suggest that the peculiar 3D orientation of these substituents is able to reproduce the hydrophobic side chains in LxxLL-like protein recognition motifs. Biological results showed altered p53 expression and nuclear translocation in cells sensitive to the compounds, suggesting p53 involvement in their anticancer mechanism of action. Unfortunately, because of poor solubility of the active analogues, it was not possible to perform further investigation by NMR techniques. Pharmacophore models were generated and used to perform 3D searches in molecular databases. Results indicated that two compounds share the same pharmacological profile and the same pharmacophoric features with our new derivatives, and one of them inhibited MDM2–MDM4 heterodimer formation

    Structure–Activity Relationships and Biological Characterization of a Novel, Potent, and Serum Stable C‑X‑C Chemokine Receptor Type 4 (CXCR4) Antagonist

    Get PDF
    In our ongoing pursuit of CXCR4 antagonists as potential anticancer agents, we recently developed a potent, selective, and plasma stable peptide, Ac-Arg-Ala-[d-Cys-Arg-Phe-Phe-Cys]-COOH (<b>3</b>). Nevertheless, this compound was still not potent enough (IC<sub>50</sub> ≈ 53 nM) to enter preclinical studies. Thus, a lead-optimization campaign was here undertaken to further improve the binding affinity of <b>3</b> while preserving its selectivity and proteolytic stability. Specifically, extensive structure–activity relationships (SARs) investigations were carried out on both its aromatic and disulfide forming amino acids. One among the synthesized analogue, Ac-Arg-Ala-[d-Cys-Arg-Phe-His-Pen]-COOH (<b>19</b>), displayed subnanomolar affinity toward CXCR4, with a marked selectivity over CXCR3 and CXCR7. NMR and molecular modeling studies disclosed the molecular bases for the binding of <b>19</b> to CXCR4 and for its improved potency compared to the lead <b>3</b>. Finally, biological assays on specific cancer cell lines showed that <b>19</b> can impair CXCL12-mediated cell migration and CXCR4 internalization more efficiently than the clinically approved CXCR4 antagonist plerixafor

    Ligand-Based NMR Study of C‑X‑C Chemokine Receptor Type 4 (CXCR4)–Ligand Interactions on Living Cancer Cells

    No full text
    Peptide-binding G protein-coupled receptors (GPCRs) are key effectors in numerous pathological and physiological pathways. The assessment of the receptor-bound conformation of a peptidic ligand within a membrane receptor such as a GPCR is of great impact for a rational drug design of more potent analogues. In this work, we applied multiple ligand-based nuclear magnetic resonance (NMR) methods to study the interaction of peptide heptamers, derived from the C-X-C Motif Chemokine 12 (CXCL12), and the C-X-C Chemokine Receptor Type 4 (CXCR4) on membranes of human T-Leukemia cells (CCRF-CEM cells). This study represents the first structural investigation reporting the receptor-bound conformation of a peptide to a GPCR directly on a living cell. The results obtained in the field of CXCL12/CXCR4 are proofs of concept, although important information for researchers dealing with the CXCR4 field arises. General application of the presented NMR methodologies is possible and surely may help to boost the development of new therapeutic agents targeting GPCRs
    corecore