23 research outputs found

    ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis

    Get PDF
    Purpose: Acute renal tubular necrosis (ATN), a common cause of acute renal failure, is a dynamic, rapidly evolving clinical condition associated with apoptotic and necrotic tubular cell death. Its early identification is critical, but current detection methods relying upon clinical assessment, such as kidney biopsy and functional assays, are insufficient. We have developed a family of small molecule compounds, ApoSense, that is capable, upon systemic administration, of selectively targeting and accumulating within apoptotic/necrotic cells and is suitable for attachment of different markers for clinical imaging. The purpose of this study was to test the applicability of these molecules as a diagnostic imaging agent for the detection of renal tubular cell injury following renal ischemia. Methods: Using both fluorescent and radiolabeled derivatives of one of the ApoSense compounds, didansyl cystine, we evaluated cell death in three experimental, clinically relevant animal models of ATN: renal ischemia/reperfusion, radiocontrast-induced distal tubular necrosis, and cecal ligature and perforation-induced sepsis. Results: ApoSense showed high sensitivity and specificity in targeting injured renal tubular epithelial cells in vivo in all three models used. Uptake of ApoSense in the ischemic kidney was higher than in the non-ischemic one, and the specificity of ApoSense targeting was demonstrated by its localization to regions of apoptotic/necrotic cell death, detected morphologically and by TUNEL staining. Conclusion: ApoSense technology should have significant clinical utility for real-time, noninvasive detection of renal parenchymal damage of various types and evaluation of its distribution and magnitude; it may facilitate the assessment of efficacy of therapeutic interventions in a broad spectrum of disease states

    Predicting the length of mechanical ventilation in acute respiratory disease syndrome using machine learning: The PIONEER Study

    Get PDF
    Background: The ability to predict a long duration of mechanical ventilation (MV) by clinicians is very limited. We assessed the value of machine learning (ML) for early prediction of the duration of MV > 14 days in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Methods: This is a development, testing, and external validation study using data from 1173 patients on MV ≥ 3 days with moderate-to-severe ARDS. We first developed and tested prediction models in 920 ARDS patients using relevant features captured at the time of moderate/severe ARDS diagnosis, at 24 h and 72 h after diagnosis with logistic regression, and Multilayer Perceptron, Support Vector Machine, and Random Forest ML techniques. For external validation, we used an independent cohort of 253 patients on MV ≥ 3 days with moderate/severe ARDS. Results: A total of 441 patients (48%) from the derivation cohort (n = 920) and 100 patients (40%) from the validation cohort (n = 253) were mechanically ventilated for >14 days [median 14 days (IQR 8–25) vs. 13 days (IQR 7–21), respectively]. The best early prediction model was obtained with data collected at 72 h after moderate/severe ARDS diagnosis. Multilayer Perceptron risk modeling identified major prognostic factors for the duration of MV > 14 days, including PaO2/FiO2, PaCO2, pH, and positive end-expiratory pressure. Predictions of the duration of MV > 14 days showed modest discrimination [AUC 0.71 (95%CI 0.65–0.76)]. Conclusions: Prolonged MV duration in moderate/severe ARDS patients remains difficult to predict early even with ML techniques such as Multilayer Perceptron and using data at 72 h of diagnosis. More research is needed to identify markers for predicting the length of MV. This study was registered on 14 August 2023 at ClinicalTrials.gov (NCT NCT05993377)

    A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants

    No full text
    Known in over 150 species, cytoplasmic male sterility is encoded by aberrant mitochondrial genes that prevent pollen development. The RNA- or protein-level expression of most of the mitochondrial genes encoding cytoplasmic male sterility is altered in the presence of one or more nuclear genes called restorers of fertility that suppress the male-sterile phenotype. Cytoplasmic male sterility/restorer systems have been proven to be an invaluable tool in the production of hybrid seeds. Despite their importance for both the production of major crops such as rice and sunflower and the study of organelle/nuclear interactions in plants, none of the nuclear fertility-restorer genes that reduce the expression of aberrant mitochondrial proteins have previously been cloned. Here we report the isolation of a gene directly involved in the control of the expression of a cytoplasmic male sterility-encoding gene. The Petunia restorer of fertility gene product is a mitochondrially targeted protein that is almost entirely composed of 14 repeats of the 35-aa pentatricopeptide repeat motif. In a nonrestoring genotype we identified a homologous gene that exhibits a deletion in the promoter region and is expressed in roots but not in floral buds

    Poly( N

    No full text
    corecore