5 research outputs found

    Mechanical Properties of Chaperone BiP, the Master Regulator of the Endoplasmic Reticulum

    Get PDF
    Immunoglobulin heavy-chain-binding protein (BiP protein) is a 75-kDa Hsp70 monomeric ATPase motor that plays broad and crucial roles maintaining proteostasis inside the cell. Its malfunction has been related with the appearance of many and important health problems such as neurodegenerative diseases, cancer, and heart diseases, among others. In particular, it is involved in many endoplasmic reticulum (ER) processes and functions, such as protein synthesis, folding, and assembly, and also it works in the posttranslational mechanism of protein translocation. However, it is unknown what kind of molecular motor BiP works like, since the mechanochemical mechanism that BiP utilizes to perform its work during posttranslational translocation across the ER is not fully understood. One novel approach to study both structural and catalytic properties of BiP considers that the viscoelastic regime behavior of the enzymes (considering them as a spring) and their mechanical properties are correlated with catalysis and ligand binding. Structurally, BiP is formed by two domains, and to establish a correlation between BiP structure and catalysis and how its conformational and viscoelastic changes are coupled to ligand binding, catalysis, and allosterism (information transmitted between the domains), optical tweezers and nano-rheology techniques have been essential in this regard

    DNA staining method based on formazan precipitation induced by blue light exposure

    No full text
    DNA staining methods are very important for biomedical research. We designed a simple method that allows DNA visualization to the naked eye by the formation of a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in a solution of 1x (equivalent to 2.0 mu M) SYBR Green I (SG I) and 0.20 mM nitro blue tetrazolium that produces a purple precipitate of formazan when exposed to sunlight or specifically blue light. Also, DNA recovery tests were performed using an ampicillin resistant plasmid in an agarose gel stained with our method. A larger number of colonies was obtained with our method than with traditional staining using SG I with ultraviolet illumination. The described method is fast, specific, and non-toxic for DNA detection, allowing visualization of biomolecules to the "naked eye" without a transilluminator, and is inexpensive and appropriate for field use. For these reasons, our new DNA staining method has potential benefits to both research and industry.Fondo Nacional de Desarrollo Cientifico y Tecnologico (Fondecyt), Chile 11130263 Project CONICYT + NERC + Programa de Colaboracion Internacional PCI-PII20150073 U-inicia from the Vicerrectoria de Investigacion Universidad de Chil

    New visible and selective DNA staining method in gels with tetrazolium salts

    No full text
    © 2016 Elsevier Inc.DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a re

    Mechanical properties of BiP protein determined by nano-rheology

    No full text
    © 2018 The Protein Society Immunoglobulin Binding Protein (BiP) is a chaperone and molecular motor belonging to the Hsp70 family, involved in the regulation of important biological processes such as synthesis, folding and translocation of proteins in the Endoplasmic Reticulum. BiP has two highly conserved domains: the N-terminal Nucleotide-Binding Domain (NBD), and the C-terminal Substrate-Binding Domain (SBD), connected by a hydrophobic linker. ATP binds and it is hydrolyzed to ADP in the NBD, and BiP's extended polypeptide substrates bind in the SBD. Like many molecular motors, BiP function depends on both structural and catalytic properties that may contribute to its performance. One novel approach to study the mechanical properties of BiP considers exploring the changes in the viscoelastic behavior upon ligand binding, using a technique called nano-rheology. This technique is essentially a traditional rheology experiment, in which an oscillatory force is directly applied to the pr

    Prolonged AT1R activation induces CaV1.2 channel internalization in rat cardiomyocytes

    Get PDF
    Abstract The cardiac L-type calcium channel is a multi-subunit complex that requires co-assembling of the pore-forming subunit CaV1.2 with auxiliary subunits CaVα2δ and CaVβ. Its traffic has been shown to be controlled by these subunits and by the activation of various G-protein coupled receptors (GPCR). Here, we explore the consequences of the prolonged activation of angiotensin receptor type 1 (AT1R) over CaV1.2 channel trafficking. Bioluminescence Resonance Energy Transfer (BRET) assay between β-arrestin and L-type channels in angiotensin II-stimulated cells was used to assess the functional consequence of AT1R activation, while immunofluorescence of adult rat cardiomyocytes revealed the effects of GPCR activation on CaV1.2 trafficking. Angiotensin II exposure results in β-arrestin1 recruitment to the channel complex and an apparent loss of CaV1.2 immunostaining at the T-tubules. Accordingly, angiotensin II stimulation causes a decrease in L-type current, Ca2+ transients and myocyte contractility, together with a faster repolarization phase of action potentials. Our results demonstrate that prolonged AT1R activation induces β-arrestin1 recruitment and the subsequent internalization of CaV1.2 channels with a half-dose of AngII on the order of 100 nM, suggesting that this effect depends on local renin-angiotensin system. This novel AT1R-dependent CaV1.2-trafficking modulation likely contributes to angiotensin II-mediated cardiac remodeling
    corecore