22 research outputs found

    Assessment of salinity-induced photorespiratory glycolate metabolism in Anabaena sp. PCC 7120

    Full text link
    This paper reports an investigation of salinity-induced glycolate metabolism in the cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena PCC 7120). Quantitative analysis of transcripts for the photosynthesis-associated genes encoding ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), phosphoribulokinase and transketolase, as well as those involved in glycolate metabolism (phosphoglycolate phosphatase, glycolate oxidase, alanine-glyoxylate aminotransferase and serine hydroxymethyltransferase) was performed. The expression of all investigated photosynthesis-associated genes except Rubisco was downregulated after 24 h NaCl treatment. However, under the same conditions, the transcripts encoding enzymes involved in glycolate metabolism were overexpressed. This was further confirmed by the quantitative analysis of the intermediates involved in glycolate metabolism. The intracellular levels of organic acids (glyceric, glycolic and glyoxylic acids) and amino acids (glycine and serine) were elevated in salt-treated cells as compared to those in the control cells. Transcriptional inhibition of photosynthesis-associated genes, and upregulation of genes and enhanced synthesis of intermediates associated with glycolate metabolism, indicate the occurrence of this photorespiratory metabolic pathway metabolism in Anabaena PCC 7120 under salt stress. © 2011 SGM

    Characterization of a unique conformational epitope on free immunoglobulin kappa light chains that is recognized by an antibody with therapeutic potential

    No full text
    The murine mAb, K-1-21, recognizes a conformational epitope expressed on free Ig kappa light chains (FÎșLCs) and also on cell membrane-associated FÎșLCs found on kappa myeloma cells. This has led to the development of a chimeric version of K-1-21, MDX-1097, which is being assessed in a Phase II clinical trial for the treatment of multiple myeloma. The epitope recognized by K-1-21 is of particular interest, especially in the context that it is not expressed on heavy chain-associated light chains such as in an intact Ig molecule. Using epitope excision techniques we have localized the K-1-21 epitope to a region spanning residues 104–110 of FÎșLC. This short strand of residues links the variable and constant domains, and is a flexible region that adopts different conformations in FÎșLC and heavy chain-associated light chain. We tested this region using site-directed mutations and found that the reactivity of K-1-21 for FÎșLC was markedly reduced. Finally, we applied in silico molecular docking to generate a model that satisfied the experimental data. Given the clinical potential of the Ag, this study may aid the development of next generation compounds that target the membrane form of FÎșLC expressed on the surface of myeloma plasma cells

    Recovery of Extra-Radical Fungal Peptides Amenable for Shotgun Protein Profiling in Arbuscular Mycorrhizae

    No full text
    International audienceIn arbuscular mycorrhizal symbiosis, the belowground mycelium that develops into the soil, not only provides extensive pathways for nutrient fluxes, the occupation of different niches, and dispersal of propagules, but also has strong influences upon biogeochemical cycling. By providing a valuable overview of expression changes of most proteins, shotgun proteomics can help decipher key metabolic pathways involved in the functioning of fungal mycelia. In this protocol, we describe the combination of extra-radical mycelium growth systems with gel-based extraction of fungal peptides amenable for shotgun protein profiling, which allows gaining information about the extra-radical proteom
    corecore