2,419 research outputs found

    6'-Methoxy Raloxifene-analog enhances mouse bone properties with reduced estrogen receptor binding

    Get PDF
    Raloxifene (RAL) is an FDA-approved drug used to treat osteoporosis in postmenopausal women. RAL suppresses bone loss primarily through its role as a selective estrogen receptor modulator (SERM). This hormonal estrogen therapy promotes unintended side effects, such as hot flashes and increased thrombosis risk, and prevents the drug from being used in some patient populations at-risk for fracture, including children with bone disorders. It has recently been demonstrated that RAL can have significant positive effects on overall bone mechanical properties by binding to collagen and increasing bone tissue hydration in a cell-independent manner. A Raloxifene-Analog (RAL-A) was synthesized by replacing the 6-hydroxyl substituent with 6-methoxy in effort to reduce the compound's binding affinity for estrogen receptors (ER) while maintaining its collagen-binding ability. It was hypothesized that RAL-A would improve the mechanical integrity of bone in a manner similar to RAL, but with reduced estrogen receptor binding. Molecular assessment showed that while RAL-A did reduce ER binding, downstream ER signaling was not completely abolished. In-vitro, RAL-A performed similarly to RAL and had an identical concentration threshold on osteocyte cell proliferation, differentiation, and function. To assess treatment effect in-vivo, wildtype (WT) and heterozygous (OIM+/-) female mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL or RAL-A from 8 weeks to 16 weeks of age. There was an untreated control group for each genotype as well. Bone microarchitecture was assessed using microCT, and mechanical behavior was assessed using 3-point bending. Results indicate that both compounds produced analogous gains in tibial trabecular and cortical microarchitecture. While WT mechanical properties were not drastically altered with either treatment, OIM+/- mechanical properties were significantly enhanced, most notably, in post-yield properties including bone toughness. This proof-of-concept study shows promising results and warrants the exploration of additional analog iterations to further reduce ER binding and improve fracture resistance

    Dramatic Plays as a Tool to Educate Young African-American Females about HIV/AIDS

    Full text link
    Rates of HIV/AIDS transmission have increased substantially, particularly among young African American women. According to the Centers for Disease Control and Prevention (CDC), HIV/AIDS is the number one killer for African American women aged 25 to 34. Given that many of these young women are contracting the disease in their late teens and early twenties, there is a need to develop interventions that directly address the needs of this group. The current study sought to assess the effectiveness of theater in increasing knowledge of HIV/AIDS and the likelihood of healthier sexual behavior and choices among 219 young African American women 18 to 39 years of age. Paired sample t-tests revealed that there were significant mean differences in knowledge and intended safe sex behavior after viewing the play. Young women who viewed the play reported increased knowledge of HIV and reported a higher likelihood of engaging in safer sex. Given the high rates of HIV/AIDS among young African American women, more innovative educational and prevention techniques are needed

    Geometric Thermodynamics of Schwarzschild-AdS black hole with a Cosmological Constant as State Variable

    Full text link
    The thermodynamics of the Schwarzschild-AdS black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD). Different choices of the metric in the equilibrium states manifold are used in order to reproduce the Hawking-Page phase transition as a divergence of the thermodynamical curvature scalar. We show that the enthalpy and total energy representations of GTD does not reproduce the transition while the entropy rep- resentation gives the expected behavior.Comment: 14 page

    Identification of Regulatory Elements in the Untranslated Regions of Streptolysin S Associated Gene A Messenger RNA from Group A Streptococcus

    Get PDF
    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is a human pathogen associated with a variety of diseases such as strep throat, scarlet fever, toxic shock syndrome, and necrotizing fasciitis. One of the virulence factors released by GAS during an invasive infection is a cytotoxic peptide, streptolysin S (SLS), which inhibits the immune response to necrotizing fasciitis. The streptolysin S associated gene A product, SagA, is modified to produce SLS. Thesag operon includes sagA and the genes required for enzyme-mediated post-translational modifications of SagA and the export of SLS. The sagA gene is contained within the pleiotropic effect locus (pel), which produces a small RNA (sRNA) that regulates the expression of other virulence factors. Potential mRNA interactions with the Pel sRNA have been mapped to the 5\u27 and 3\u27 untranslated regions (UTRs) of sagA. Our studies aim to identify and characterize RNA structural motifs in Pel/sagA that regulate the expression of sagA and other virulence factors. Several RNA constructs of Pel/sagA were designed to include regions predicted to contain secondary structure. The corresponding sequences were isolated by PCR from genomic DNA to create templates for in vitro transcription. After purification, the RNA constructs were analyzed by gel electrophoresis to verify size, and by RNase T1 digestion to assay for secondary structure. Three-dimensional models were generated using the FARFAR algorithm in Rosetta in order to identify regions of Pel/sagA that may be involved in regulatory interactions. Differential scanning fluorimetry provided evidence that the 5\u27 and 3\u27 UTRs of Pel/sagA contain stable structural regions. It is expected that the identification of structural motifs necessary for the regulation of gene expression will aid in the design of therapeutic strategies to inhibit the production of streptolysin S and other virulence factors

    Physician decision making in selection of second-line treatments in immune thrombocytopenia in children.

    Get PDF
    Immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder which presents with isolated thrombocytopenia and risk of hemorrhage. While most children with ITP promptly recover with or without drug therapy, ITP is persistent or chronic in others. When needed, how to select second-line therapies is not clear. ICON1, conducted within the Pediatric ITP Consortium of North America (ICON), is a prospective, observational, longitudinal cohort study of 120 children from 21 centers starting second-line treatments for ITP which examined treatment decisions. Treating physicians reported reasons for selecting therapies, ranking the top three. In a propensity weighted model, the most important factors were patient/parental preference (53%) and treatment-related factors: side effect profile (58%), long-term toxicity (54%), ease of administration (46%), possibility of remission (45%), and perceived efficacy (30%). Physician, health system, and clinical factors rarely influenced decision-making. Patient/parent preferences were selected as reasons more often in chronic ITP (85.7%) than in newly diagnosed (0%) or persistent ITP (14.3%, P = .003). Splenectomy and rituximab were chosen for the possibility of inducing long-term remission (P < .001). Oral agents, such as eltrombopag and immunosuppressants, were chosen for ease of administration and expected adherence (P < .001). Physicians chose rituximab in patients with lower expected adherence (P = .017). Treatment choice showed some physician and treatment center bias. This study illustrates the complexity and many factors involved in decision-making in selecting second-line ITP treatments, given the absence of comparative trials. It highlights shared decision-making and the need for well-conducted, comparative effectiveness studies to allow for informed discussion between patients and clinicians

    Ecological and evolutionary drivers of hemoplasma infection and bacterial genotype sharing in a Neotropical bat community

    Get PDF
    Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropic Mycoplasma spp. (i.e., haemoplasmas) across a speciesâ€rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and twoâ€thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare—but detectable—bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand crossâ€species transmission and the epidemiological consequences of bacterial pathogens

    Bad metallic transport in a cold atom Fermi-Hubbard system

    Full text link
    Charge transport is a revealing probe of the quantum properties of materials. Strong interactions can blur charge carriers resulting in a poorly understood "quantum soup". Here we study the conductivity of the Fermi-Hubbard model, a testing ground for strong interaction physics, in a clean quantum system - ultracold 6^6Li in a 2D optical lattice. We determine the charge diffusion constant in our system by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity, which exhibits a linear temperature dependence and exceeds the Mott-Ioffe-Regel limit, two characteristic signatures of a bad metal. The techniques we develop here may be applied to measurements of other transport quantities, including the optical conductivity and thermopower

    Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves

    Get PDF
    peer-reviewedBackground There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. Results There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups. Conclusion Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak

    Bounds for Lepton Flavor Violation and the Pseudoscalar Higgs in the General Two Higgs Doublet Model using g2g-2 muon factor

    Full text link
    Current experimental data from the g2g-2 muon factor, seems to show the necessity of physics beyond the Standard Model (SM), since the difference between SM and experimental predictions is 2.6σ\sigma . In the framework of the General Two Higgs Doublet Model (2HDM), we calculate the muon anomalous magnetic moment to get lower and upper bounds for the Flavour Changing (FC) Yukawa couplings in the leptonic sector. We also obtain lower bounds for the mass of the pseudoscalar Higgs (mA0m_{A^0}) as a function of the parameters of the model.Comment: 12 pages, RevTex4, 5 figures. Improved presentation, updated experimental data, amplified analysis, new figures added. Subbmited to Phys. Rev.

    Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)

    Get PDF
    Background Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) is a multi-center longitudinal, observational study to identify novel phenotypes and biomarkers of chronic obstructive pulmonary disease (COPD). In a subset of 300 subjects enrolled at six clinical centers, we are performing flow cytometric analyses of leukocytes from induced sputum, bronchoalveolar lavage (BAL) and peripheral blood. To minimize several sources of variability, we use a “just-in-time” design that permits immediate staining without pre-fixation of samples, followed by centralized analysis on a single instrument. Methods The Immunophenotyping Core prepares 12-color antibody panels, which are shipped to the six Clinical Centers shortly before study visits. Sputum induction occurs at least two weeks before a bronchoscopy visit, at which time peripheral blood and bronchoalveolar lavage are collected. Immunostaining is performed at each clinical site on the day that the samples are collected. Samples are fixed and express shipped to the Immunophenotyping Core for data acquisition on a single modified LSR II flow cytometer. Results are analyzed using FACS Diva and FloJo software and cross-checked by Core scientists who are blinded to subject data. Results Thus far, a total of 152 sputum samples and 117 samples of blood and BAL have been returned to the Immunophenotyping Core. Initial quality checks indicate useable data from 126 sputum samples (83%), 106 blood samples (91%) and 91 BAL samples (78%). In all three sample types, we are able to identify and characterize the activation state or subset of multiple leukocyte cell populations (including CD4+ and CD8+ T cells, B cells, monocytes, macrophages, neutrophils and eosinophils), thereby demonstrating the validity of the antibody panel. Conclusions Our study design, which relies on bi-directional communication between clinical centers and the Core according to a pre-specified protocol, appears to reduce several sources of variability often seen in flow cytometric studies involving multiple clinical sites. Because leukocytes contribute to lung pathology in COPD, these analyses will help achieve SPIROMICS aims of identifying subgroups of patients with specific COPD phenotypes. Future analyses will correlate cell-surface markers on a given cell type with smoking history, spirometry, airway measurements, and other parameters. Trial registration This study was registered with ClinicalTrials.gov as NCT01969344
    corecore