108 research outputs found
Resolution of the mystery of counter-intuitive photon correlations in far off-resonance emission from a quantum dot-cavity system
Cavity quantum-electrodynamics experiments using an atom coupled to a single
radiation-field mode have played a central role in testing foundations of
quantum mechanics, thus motivating solid-state implementations using single
quantum dots coupled to monolithic nano-cavities. In stark contrast to their
atom based counterparts, the latter experiments revealed strong cavity
emission, even when the quantum dot is far off resonance. Here we present
experimental and theoretical results demonstrating that this effect arises from
the mesoscopic nature of quantum dot confinement, ensuring the presence of a
quasi-continuum of transitions between excited quantum dot states that are
enhanced by the cavity mode. Our model fully explains photon correlation
measurements demonstrating that photons emitted at the cavity frequency are
essentially uncorrelated with each other even though they are generated by a
single quantum dot.Comment: 5 pages, 4 figure
Analysis of Radicals in Combustion Processes
This work reports on a variety of radical analysis applications in combustion that are performed in the laboratories of the Paul Scherrer Institute. Planar Laser-Induced Fluorescence and Resonant Holographic Interferometry is applied to the two-dimensional imaging of radicals in flames. The potential of Four-Wave Mixing Spectroscopy for non-perturbing combustion diagnostics is investigated and the method is applied to radicals in flames. Phase-Conjugation and the use of two different input frequencies are utilized to address typical problems in a combustion environment, i.e., lensing effects due to temperature and density gradients and congested spectra of the analyte due to significant thermal population of the ground state.More fundamentally, experiments are aimed to obtain detailed knowledge on the spectroscopy of many important radicals that are not yet characterized sufficiently for diagnostic purposes. A molecular beam apparatus has been set up where the collisionless and cold environment provides well defined experimental conditions to produce and investigate the relevant radicals. Finally, temporally and spectrally resolved fluorescence decays in the picosecond time domain are measured in an atmospheric pressure flame. These experiments yield results on vibrational and rotational energy transfer that are required for quantitative laser-induced fluorescence measurements
Higher-order photon correlations in pulsed photonic crystal nanolasers
We report on the higher-order photon correlations of a high- nanolaser
under pulsed excitation at room temperature. Using a multiplexed four-element
superconducting single photon detector we measured g with
=2,3,4. All orders of correlation display partially chaotic statistics, even
at four times the threshold excitation power. We show that this departure from
coherence and Poisson statistics is due to the quantum fluctuations associated
with the small number of dipoles and photons involved in the lasing process
Effects of brain tissue oxygen (PbtO2) guided management on patient outcomes following severe traumatic brain injury: A systematic review and meta-analysis.
Monitoring and optimisation of brain tissue oxygen tension (PbtO2) has been associated with improved neurological outcome and survival in observational studies of severe traumatic brain injury (TBI). We carried out a systematic review of randomized controlled trials to determine if PbtO2-guided management is associated with differential neurological outcomes, survival, and adverse events. Searches were carried out to 10 February 2022 in Medline (OvidSP), 11 February in EMBASE (OvidSP) and 8 February in Cochrane library. Randomized controlled trials comparing PbtO2 and ICP-guided management to ICP-guided management alone were included. The primary outcome was survival with favourable neurological outcome at 6-months post injury. Data were extracted by two independent authors and GRADE certainty of evidence assessed. There was no difference in the proportion of patients with favourable neurological outcomes with PbtO2-guided management (relative risk [RR] 1.42, 95% CI 0.97 to 2.08; p = 0.07; I2 = 0%, very low certainty evidence) but PbtO2-guided management was associated with reduced mortality (RR 0.54, 95% CI 0.31 to 0.93; p = 0.03; I2 = 42%; very low certainty evidence) and ICP (mean difference (MD) - 4.62, 95% CI - 8.27 to - 0.98; p = 0.01; I2 = 63%; very low certainty evidence). There was no significant difference in the risk of adverse respiratory or cardiovascular events. PbtO2-guided management in addition to ICP-based care was not significantly associated with increased favourable neurological outcomes, but was associated with increased survival and reduced ICP, with no difference in respiratory or cardiovascular adverse events. However, based on GRADE criteria, the certainty of evidence provided by this meta-analysis was consistently very low. MESH: Brain Ischemia; Intensive Care; Glasgow Outcome Scale; Randomized Controlled Trial; Craniocerebral Trauma
Dental therapy before and after radiotherapy–an evaluation on patients with head and neck malignancies
The present investigation evaluates the dental care situation of patients with head and neck cancer before and after radiotherapy. The situations of these patients in 1993 and 2005 were compared to detect similarities, differences and developments. In the years 1993 and 2005, 37 and 36 patients, respectively, with head and neck cancer treated by the local departments of otorhinolaryngology and of radiotherapy were examined consecutively according to their aftercare appointments. Time points of radiotherapy treatment of the patients evaluated in 1993 varied from 1984 to 1993. The patients evaluated in 2005 had received radiotherapy between 1998 and 2005. Therefore the applied radiotherapeutic regimen differed not only between the two groups of patients, but also within each group. The information for these investigations was provided anonymously. It was evaluated with descriptive statistics. The evaluation of the data shows distinct differences with respect to preventive and therapeutic dental care measures. In 2005, 35 out of 36 patients (97.2%) had a dental consultation before radiotherapy (1993, 65%). All 27 dentate patients (100%) obtained a splint for fluoride application (1993, none). 29% fewer edentulous patients were seen than in 1993. The number of teeth destroyed decreased from 19.2% (1993) to 7.8% in 2005. Mycoses due to Candida spp. and chronic failures in wound healing were rare (5.5%). In the course of the 12 years, prophylactic measures, such as the application of splints for fluoride treatment, were intensified. However, concepts for the dental care of patients undergoing radiotherapy, especially following the radiation, should be widened to avoid ruined teeth and long delayed wound healings
Development of Chemical Entities Endowed with Potent Fast-Killing Properties against Plasmodium falciparum Malaria Parasites.
One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission. Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with extremely fast-killing properties
- …