36 research outputs found

    Transport and Assembly of Magnetic Surface Rotors

    Get PDF
    This minireview focuses on recent advances with surface magnetic rotors, namely field-responsive spherical or anisotropic microparticles that translate close to, or are embedded in a confining surface. The application of external magnetic modulations allows these microscopic wheels to be remotely spun and steered while also tuning their interactions and inducing assembly from a collection of disordered, moving units. With optical microscopy one can observe and characterize the complex collective phenomena that emerge in dissipative colloidal systems driven far from equilibrium by external fields. From a technological point of view, magnetic surface rotors envisage implementation into microfluidic devices, and can be used for drug delivery, mixing as well as a model system for biological active matter

    Superconducting Nanocomposites: Enhancement of Bulk Pinning and Improvement of Intergrain Coupling

    Full text link
    Heterogeneous sonochemical method was applied for synthesis of novel superconducting nanocomposites consisting of magnetic (and/or nonmagnetic) nanoparticles embedded into the bulk of ceramic superconductors. In addition to in-situ production of the efficient pinning centers, this synthesis method considerably improves the interbrain coupling. Significant enhancement of the magnetic irreversibility is reported for Fe2O3 nanoparticles embedded into the bulk of MgB2 superconductor. Nonmagnetic Mo2O5 nanoparticles also increase pinning strength, but less than magnetic Fe2O3. Detailed magnetization and electron microscopy characterization is presented. Theory of bulk magnetic pinning due to ferromagnetic nanoparticles of finite size embedded into the superconducting matrix is developed

    Sonochemical Modification of the Superconducting Properties of MgB2

    Full text link
    Ultrasonic irradiation of magnesium diboride slurries in decalin produces material with significant inter-grain fusion. Sonication in the presence of Fe(CO)5 produces magnetic Fe2O3 nanoparticles embedded in the MgB2 bulk. The resulting superconductor-ferromagnet composite exhibits considerable enhancement of the magnetic hysteresis, which implies an increase of vortex pinning strength due to embedded magnetic nanoparticles

    Oscillatory chiral flows in confined active fluids with obstacles

    Full text link
    An active colloidal fluid comprised of self-propelled spinning particles injecting energy and angular momentum at the microscale demonstrates spontaneous collective states that range from flocks to coherent vortices. Despite their seeming simplicity, the emergent far-from-equilibrium behavior of these fluids remains poorly understood, presenting a challenge to the design and control of next-generation active materials. When confined in a ring, such so-called polar active fluids acquire chirality once the spontaneous flow chooses a direction. In a perfect ring, this chirality is indefinitely long-lived. Here, we combine experiments on self-propelled colloidal Quincke rollers and mesoscopic simulations of continuum Toner-Tu equations to explore how such chiral states can be controlled and manipulated by obstacles. For different obstacle geometries three dynamic steady states have been realized: long-lived chiral flow, an apolar state in which the flow breaks up into counter-rotating vortices and an unconventional collective state with flow having an oscillating chirality. The chirality reversal proceeds through the formation of intermittent vortex chains in the vicinity of an obstacle. We demonstrate that the frequency of collective states with oscillating chirality can be tuned by obstacle parameters. We vary obstacle shapes to design chiral states that are independent of initial conditions. Building on our findings, we realize a system with two triangular obstacles that force the active fluid towards a state with a density imbalance of active particles across the ring. Our results demonstrate how spontaneous polar active flows in combination with size and geometry of scatterers can be used to control dynamic patterns of polar active liquids for materials design.Comment: 13 pages, 5 figure

    Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors

    Full text link
    Enhancement of flux pinning by magnetic nanoparticles embedded into the bulk of type-2 superconductor is studied both theoretically and experimentally. Magnetic part of the pinning force associated with the interaction between a spherical magnetic inclusion and an Abrikosov vortex was calculated in the London approximation. Calculations are supported by the experimental results obtained on sonochemically modified MgB2 superconductor with embedded magnetic Fe2O3 nanoparticles and compared to MgB2 with nonmagnetic Mo2O5 pinning centers of similar concentration and particle size distribution. It is shown that ferromagnetic nanoparticles result in a considerable enhancement of vortex pinning in large-kappa type-2 superconductors.Comment: PDF, 14 page

    Dynamic self-assembly and self-organized transport of magnetic micro-swimmers

    Full text link
    We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field
    corecore