4 research outputs found

    Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strain-balance technology

    Get PDF
    Research into the formation of InAs quantum dots (QDs) in GaAs using the metalorganic vapor phase epitaxy technique ispresented. This technique is deemed to be cheaper than the more often used and studied molecular beam epitaxy. The bestconditions for obtaining a high photoluminescence response, indicating a good material quality, have been found among awide range of possibilities. Solar cells with an excellent quantum ef?ciency have been obtained, with a sub-bandgapphoto-response of 0.07 mA/cm2per QD layer, the highest achieved so far with the InAs/GaAs system, proving the potentialof this technology to be able to increase the ef?ciency of lattice-matched multi-junction solar cells and contributing to abetter understanding of QD technology toward the achievement of practical intermediate-band solar cells

    Light Emitting Devices Based on Quantum Well-Dots

    No full text
    We review epitaxial formation, basic properties, and device applications of a novel type of nanostructures of mixed (0D/2D) dimensionality that we refer to as quantum well-dots (QWDs). QWDs are formed by metalorganic vapor phase epitaxial deposition of 4–16 monolayers of InxGa1−xAs of moderate indium composition (0.3 < x < 0.5) on GaAs substrates and represent dense arrays of carrier localizing indium-rich regions inside In-depleted residual quantum wells. QWDs are intermediate in properties between 2D quantum wells and 0D quantum dots and show some advantages of both of those. In particular, they offer high optical gain/absorption coefficients as well as reduced carrier diffusion in the plane of the active region. Edge-emitting QWD lasers demonstrate low internal loss of 0.7 cm−1 and high internal quantum efficiency of 87%. as well as a reasonably high level of continuous wave (CW) power at room temperature. Due to the high optical gain and suppressed non-radiative recombination at processed sidewalls, QWDs are especially advantageous for microlasers. Thirty-one μm in diameter microdisk lasers show a high record for this type of devices output power of 18 mW. The CW lasing is observed up to 110 °C. A maximum 3-dB modulation bandwidth of 6.7 GHz is measured in the 23 μm in diameter microdisks operating uncooled without a heatsink. The open eye diagram is observed up to 12.5 Gbit/s, and error-free 10 Gbit/s data transmission at 30 °C without using an external optical amplifier, and temperature stabilization is demonstrated

    Quantum dot lasers and relevant nanoheterostructures

    No full text
    Spectral and power characteristics of QD stripe lasers operating in two-state lasing regime have been studied in a wide range of operation conditions. It was demonstrated that neither self-heating nor increase of the homogeneous broadening are responsible for quenching of the ground-state lasing beyond the two-state lasing threshold. It was found that difference in electron and hole capture rates strongly affects light-current curve. Modulation p-type doping is shown to enhance the peak power of GS lasing transition. Microring and microdisk structures (D = 4-9 mu m) comprising 1.3 mu m InAs/InGaAs quantum dots have been fabricated and studied by mu-PL and NSOM. Ground-state lasing was achieved well above root temperature (up to 380 K). Effect of inner diameter on threshold characteristics was evaluated
    corecore