211 research outputs found
Size effects in near-ultraviolet Raman spectra of few-nanometer-thick silicon-oninsulator nanofilms
We have fabricated Si-on-insulator (SOI) layers with a thickness h1 of a few nanometers and
examined them by Raman spectroscopy with 363.8 nm excitation. We have found that phonon and
electron confinement play important roles in SOI with h1<10 nm. We have confirmed that the
first-order longitudinal optical phonon Raman band displays size-induced major homogeneous
broadening due to phonon lifetime reduction as well as minor inhomogeneous broadening due to
wave vector relaxation (WVR), both kinds of broadening being independent of temperature. Due to
WVR, transverse acoustic (TA) phonons become Raman-active and give rise to a broad band in the
range of 100–200 cm 1. Another broad band appeared at 200–400 cm 1 in the spectrum of SOI is
attributed to the superposition of 1st order Raman scattering on longitudinal acoustic phonons and
2nd order scattering on TA phonons. Suppression of resonance-assisted 2-nd order Raman bands in
SOI spectra is explained by the electron-confinement-induced direct band gap enlargement compared
to bulk Si, which is confirmed by SOI reflection spectra. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4947021
Worldline Superfield Actions for N=2 Superparticles
We propose doubly supersymmetric actions in terms of n=2(D-2) worldline
superfields for N=2 superparticles in D=3,4 and Type IIA D=6 superspaces. These
actions are obtained by dimensional reduction of superfield actions for N=1
superparticles in D=4,6 and 10, respectively. We show that in all these models
geometrodynamical constraints on target superspace coordinates do not put the
theory on the mass shell, so the actions constructed consistently describe the
dynamics of the corresponding N=2 superparticles. We also find that in contrast
to the IIA D=6 superparticle a chiral IIB D=6 superparticle, which is not
obtainable by dimensional reduction from N=1, D=10, is described by superfield
constraints which produce dynamical equations. This implies that for the IIB
D=6 superparticle the doubly supersymmetric action does not exist in the
conventional form.Comment: Latex, 20 pp. Minor corrections, acknowledgements adde
Vanadium oxide - poly(3,4-ethylenedioxythiophene) cathodes for zinc-ion batteries: effect of synthesis temperature
Vanadium oxide composites with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) were obtained by one-step microwave-assisted hydrothermal synthesis at two different temperatures: 120 and 170 °C (denoted as V-120 and V-170, respectively). The structure and composition of the obtained samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and thermogravimetric (TG) analysis. The detailed study of the electrochemical properties of the composites as cathodes of aqueous zinc-ion battery was performed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) at different current densities and by electrochemical impedance spectroscopy (EIS). It was shown that V-120 demonstrated excellent electrochemical performance in the 0.3 to 1.4 V vs. Zn/Zn2+ potential range reaching specific capacities of up to 390 mA∙h∙g−1 at 0.3 A∙g−1 with excellent capacity stability after 1000 charge-discharge cycles. Its functional parameters were found to be much better than those of the electrodes based on the V-170 composite obtained at a higher temperature. The effect of the synthesis temperature on the electrochemical properties is discussed in terms of the crystallographic, compositional, and thermogravimetric properties of the samples
Broadband optical properties of monolayer and bulk MoS2
Layered semiconductors such as transition metal dichalcogenides (TMDs) offer endless possibilities for designing modern photonic and optoelectronic components. However, their optical engineering is still a challenging task owing to multiple obstacles, including the absence of a rapid, contactless, and the reliable method to obtain their dielectric function as well as to evaluate in situ the changes in optical constants and exciton binding energies. Here, we present an advanced approach based on ellipsometry measurements for retrieval of dielectric functions and the excitonic properties of both monolayer and bulk TMDs. Using this method, we conduct a detailed study of monolayer MoS2 and its bulk crystal in the broad spectral range (290–3300 nm). In the near- and mid-infrared ranges, both configurations appear to have no optical absorption and possess an extremely high dielectric permittivity making them favorable for lossless subwavelength photonics. In addition, the proposed approach opens a possibility to observe a previously unreported peak in the dielectric function of monolayer MoS2 induced by the use of perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) seeding promoters for MoS2 synthesis and thus enables its applications in chemical and biological sensing. Therefore, this technique as a whole offers a state-of-the-art metrological tool for next-generation TMD-based devices
Planar refraction and lensing of highly confined polaritons in anisotropic media
Refraction between isotropic media is characterized by light bending towards the normal to the boundary when passing from a low- to a high-refractive-index medium. However, refraction between anisotropic media is a more exotic phenomenon which remains barely investigated, particularly at the nanoscale. Here, we visualize and comprehensively study the general case of refraction of electromagnetic waves between two strongly anisotropic (hyperbolic) media, and we do it with the use of nanoscale-confined polaritons in a natural medium: alpha-MoO3. The refracted polaritons exhibit non-intuitive directions of propagation as they traverse planar nanoprisms, enabling to unveil an exotic optical effect: bending-free refraction. Furthermore, we develop an in-plane refractive hyperlens, yielding foci as small as lambdap/6, being lambdap the polariton wavelength (lambda0/50 compared to the wavelength of free-space light). Our results set the grounds for planar nano-optics in strongly anisotropic media, with potential for effective control of the flow of energy at the nanoscale.G.Á.-P. and J.T.-G. acknowledge support through the Severo Ochoa Program from the Government of the Principality of Asturias (nos. PA-20-PF-BP19-053 and PA-18-PF-BP17-126, respectively). S.X. acknowledges the support from Independent Research Fund Denmark (Project No. 9041-00333B). B.C. acknowledges the support from VILLUM FONDEN (No. 00027987). The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation (Project No. DNRF103.) K.V.V. and V.S.V. gratefully acknowledge the financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-606). J.M.-S. acknowledges financial support through the Ramón y Cajal Program from the Government of Spain (RYC2018-026196-I). A.Y.N. and J.I.M. acknowledge the Spanish Ministry of Science, Innovation and Universities (national projects MAT201788358-C3-3-R and PID2019-104604RB/AEI/10.13039/501100011033). R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant No. IT1164-19). A.Y.N. also acknowledges the Basque Department of Education (grant no. PIBA-2020-1-0014). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-111156GB-I00)
Transition metal dichalcogenide nanospheres for high-refractive-index nanophotonics and biomedical theranostics
Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging
Twist-tunable polaritonic nanoresonators in a van der Waals crystal
Optical nanoresonators are key building blocks in various nanotechnological applications (e.g., spectroscopy) due to their ability to effectively confine light at the nanoscale. Recently, nanoresonators based on phonon polaritons (PhPs)—light coupled to lattice vibrations—in polar crystals (e.g., SiC, or h-BN) have attracted much attention due to their strong field confinement, high quality factors, and their potential to enhance the photonic density of states at mid-infrared (mid-IR) frequencies, where numerous molecular vibrations reside. Here, we introduce a new class of mid-IR nanoresonators that not only exhibit the extraordinary properties previously reported, but also incorporate a new degree of freedom: twist tuning, i.e., the possibility of controlling their spectral response by simply rotating the constituent material. To achieve this result, we place a pristine slab of the van der Waals (vdW) α-MoO3 crystal, which supports in-plane hyperbolic PhPs, on an array of metallic ribbons. This sample design based on electromagnetic engineering, not only allows the definition of α-MoO3 nanoresonators with low losses (quality factors, Q, up to 200), but also enables a broad spectral tuning of the polaritonic resonances (up to 32 cm−1, i.e., up to ~6 times their full width at half maximum, FWHM ~5 cm−1) by a simple in-plane rotation of the same slab (from 0 to 45°). These results open the door to the development of tunable and low-loss IR nanotechnologies, fundamental requirements for their implementation in molecular sensing, emission or photodetection applications.A.I.F.T.-M. and J.T.-G. acknowledge support through the Severo Ochoa program from the Government of the Principality of Asturias (nos. PA-21-PF-BP20-117 and PA-18-PF-BP17-126, respectively). J.M.-S. acknowledges financial support from the Ramón y Cajal Program of the Government of Spain and FSE (RYC2018-026196-I), and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-110308GA-I00/AEI/10.13039/501100011033). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-111156GB-I00). A.Y.N. acknowledges the Spanish Ministry of Science and Innovation (grants MAT201788358-C3-3-R and PID2020-115221GB-C42) and the Basque Department of Education (grant PIBA-2020-1-0014). This project has been supported by Asturias FICYT under grant AYUD/2021/51185 with the support of FEDER funds. This work is produced with the support of a 2022 Leonardo Grant for Researchers in Physics, BBVA Foundation.Peer reviewe
Complex and unexpected dynamics in simple genetic regulatory networks
Peer reviewedPublisher PD
Planar refraction and lensing of highly confined polaritons in anisotropic media
Refraction between isotropic media is characterized by light bending towards the normal to the boundary when passing from a low- to a high-refractive-index medium. However, refraction between anisotropic media is a more exotic phenomenon which remains barely investigated, particularly at the nanoscale. Here, we visualize and comprehensively study the general case of refraction of electromagnetic waves between two strongly anisotropic (hyperbolic) media, and we do it with the use of nanoscale-confined polaritons in a natural medium: α-MoO3. The refracted polaritons exhibit non-intuitive directions of propagation as they traverse planar nanoprisms, enabling to unveil an exotic optical effect: bending-free refraction. Furthermore, we develop an in-plane refractive hyperlens, yielding foci as small as λp/6, being λp the polariton wavelength (λ0/50 compared to the wavelength of free-space light). Our results set the grounds for planar nano-optics in strongly anisotropic media, with potential for effective control of the flow of energy at the nanoscale.G.Á.-P. and J.T.-G. acknowledge support through the Severo Ochoa Program from the Government of the Principality of Asturias (nos. PA-20-PF-BP19-053 and PA-18-PF-BP17-126, respectively). S.X. acknowledges the support from Independent Research Fund Denmark (Project No. 9041-00333B). B.C. acknowledges the support from VILLUM FONDEN (No. 00027987). The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation (Project No. DNRF103.) K.V.V. and V.S.V. gratefully acknowledge the financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-606). J.M.-S. acknowledges financial support through the Ramón y Cajal Program from the Government of Spain (RYC2018-026196-I). A.Y.N. and J.I.M. acknowledge the Spanish Ministry of Science, Innovation and Universities (national projects MAT201788358-C3-3-R and PID2019-104604RB/AEI/10.13039/501100011033). R.H. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (national project RTI2018-094830-B-100 and the project MDM-2016-0618 of the Marie de Maeztu Units of Excellence Program) and the Basque Government (grant No. IT1164-19). A.Y.N. also acknowledges the Basque Department of Education (grant no. PIBA-2020-1-0014). P.A.-G. acknowledges support from the European Research Council under starting grant no. 715496, 2DNANOPTICA and the Spanish Ministry of Science and Innovation (State Plan for Scientific and Technical Research and Innovation grant number PID2019-111156GB-I00).Peer reviewe
Efficiency of Finding Muon Track Trigger Primitives in CMS Cathode Strip Chambers
In the CMS Experiment, muon detection in the forward direction is accomplished by cathode strip chambers~(CSC). These detectors identify muons, provide a fast muon trigger, and give a precise measurement of the muon trajectory. There are 468 six-plane CSCs in the system. The efficiency of finding muon trigger primitives (muon track segments) was studied using~36 CMS CSCs and cosmic ray muons during the Magnet Test and Cosmic Challenge~(MTCC) exercise conducted by the~CMS experiment in~2006. In contrast to earlier studies that used muon beams to illuminate a very small chamber area (~m), results presented in this paper were obtained by many installed CSCs operating {\em in situ} over an area of ~m as a part of the~CMS experiment. The efficiency of finding 2-dimensional trigger primitives within 6-layer chambers was found to be~. These segments, found by the CSC electronics within ~ns after the passing of a muon through the chambers, are the input information for the Level-1 muon trigger and, also, are a necessary condition for chambers to be read out by the Data Acquisition System
- …