2 research outputs found

    RCS reduction of a microstrip patch using lumped loads

    Get PDF
    In this report we consider the radar cross section (RCS) of a single rectangular patch antenna in a recessed cavity. Using a previously developed finite element-boundary integral method code, a study is performed on the patch's RCS as a function of frequency. To reduce the RCS of the patch at the resonant frequency, lumped (resistive) loads are placed at the edges of the patch. The effects of the lumped loads on the patch's RCS and gain are examined and it is observed that the RCS and gain are reduced as the as the load value decreases, whereas the antenna's bandwidth is increased. At resonance, the usual relations between the RCS and gain is observed, but it is shown that this relation no longer holds at frequencies away from resonance

    Electromagnetic characterization of conformal antennas

    Get PDF
    The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations
    corecore