19 research outputs found

    Silencing of Claudin-11 Is Associated with Increased Invasiveness of Gastric Cancer Cells

    Get PDF
    Claudins are membrane proteins that play critical roles in tight junction (TJ) formation and function. Members of the claudin gene family have been demonstrated to be aberrantly regulated, and to participate in the pathogenesis of various human cancers. In the present study, we report that claudin-11 (CLDN11) is silenced in gastric cancer via hypermethylation of its promoter region.Levels of CLDN11 methylation and mRNA expression were measured in primary gastric cancer tissues, noncancerous gastric mucosae, and cell lines of gastric origin using quantitative methylation-specific PCR (qMSP) and quantitative reverse transcriptase-PCR (qRT-PCR), respectively. Analyses of paired gastric cancers and adjacent normal gastric tissues revealed hypermethylation of the CLDN11 promoter region in gastric cancers, and this hypermethylation was significantly correlated with downregulation of CLDN11 expression vs. normal tissues. The CLDN11 promoter region was also hypermethylated in all gastric cancer cell lines tested relative to immortalized normal gastric epithelial cells. Moreover, CLDN11 mRNA expression was inversely correlated with its methylation level. Treatment of CLDN11-nonexpressing gastric cancer cells with 5-aza-2'-deoxycytidine restored CLDN11 expression. Moreover, siRNA-mediated knockdown of CLDN11 expression in normal gastric epithelial cells increased their motility and invasiveness.These data suggest that hypermethylation of CLDN11, leading to downregulated expression, contributes to gastric carcinogenesis by increasing cellular motility and invasiveness. A further understanding of the mechanisms underlying the role of claudin proteins in gastric carcinogenesis will likely help in the identification of novel approaches for diagnosis and therapy of gastric cancer

    A Multicenter, Double-Blinded Validation Study of Methylation Biomarkers for Progression Prediction in Barrett's Esophagus

    Get PDF
    Esophageal adenocarcinoma risk in Barrett’s esophagus (BE) is increased 30- to 125-fold versus the general population. Among all BE patients, however, neoplastic progression occurs only once per 200 patient-years. Molecular biomarkers are therefore needed to risk-stratify patients for more efficient surveillance endoscopy and to improve the early detection of progression. We therefore performed a retrospective, multicenter, double-blinded validation study of 8 BE progression prediction methylation biomarkers. Progression or nonprogression were determined at 2 years (tier 1) and 4 years (tier 2). Methylation was assayed in 145 nonprogressors (NPs) and 50 progressors (Ps) using real-time quantitative methylation-specific PCR. Ps were significantly older than NPs (70.6 vs. 62.5 years, p < 0.001). We evaluated a linear combination of the 8 markers, using coefficients from a multivariate logistic regression analysis. Areas under the ROC curve (AUCs) were high in the 2-, 4-year and combined data models (0.843, 0.829 and 0.840; p<0.001, p<0.001 and p<0.001, respectively). In addition, even after rigorous overfitting correction, the incremental AUCs contributed by panels based on the 8 markers plus age vs. age alone were substantial (Δ-AUC = 0.152, 0.114 and 0.118, respectively) in all three models. A methylation biomarker-based panel to predict neoplastic progression in BE has potential clinical value in improving both the efficiency of surveillance endoscopy and the early detection of neoplasia

    Rarity of Somatic Mutation and Frequency of Normal Sequence Variation Detected in Sporadic Colon Adenocarcinoma Using High-Throughput cDNA Sequencing

    No full text
    We performed high-throughput cDNA sequencing in colorectal adenocarcinoma and matching normal colorectal epithelium. All six hundred three genes in the UCSC database that were expressed in colon cancers and contained open reading frames of 1000 nucleotides or less were selected for study (total basepairs/bp, 366,686). 304,350 of these 366,686 bp (83.0%) were amplified and sequenced successfully. Seventy-eight sequence variants present in germline (i.e. normal) as well as matching somatic (i.e. tumor) DNA were discovered, yielding a frequency of 1 variant per 3,902 bp. Fifty-one of these sequence variants were homozygous (26 synonymous, 25 non-synonymous), while 27 were heterozygous (11 synonymous, 16 non-synonymous). Cancer tissue contained only one sequence-altered allele of the gene ATP50, which was present heterozygously alongside the wild-type allele in matching normal epithelium. Despite this relatively large number of bp and genes sequenced, no somatic mutations unique to tumor were found. High-throughput cDNA sequencing is a practical approach for detecting novel sequence variations and alterations in human tumors, such as those of the colon

    Beyond Field Effect: Analysis of Shrunken Centroids in Normal Esophageal Epithelia Detects Concomitant Esophageal Adenocarcinoma

    No full text
    Background and Aims: Because of the extremely low neoplastic progression rate in Barrett’s esophagus, it is difficult to diagnose patients with concomitant adenocarcinoma early in their disease course. If biomarkers existed in normal squamous esophageal epithelium to identify patients with concomitant esophageal adenocarcinoma, potential applications would be far-reaching. The aim of the current study was to identify global gene expression patterns in normal esophageal epithelium capable of revealing simultaneous esophageal adenocarcinoma, even located remotely in the esophagus.Methods: Tissues comprised normal esophageal epithelia from 9 patients with esophageal adenocarcinoma, 8 patients lacking esophageal adenocarcinoma or Barrett’s, and 6 patients with Barrett’s esophagus alone. cDNA microarrays were performed, and pattern recognition in each of these subgroups was achieved using shrunken nearest centroid predictors. Results: Our method accurately discriminated normal esophageal epithelia of 8/8 patients without esophageal adenocarcinoma or Barrett’s esophagus and of 6/6 patients with Barrett’s esophagus alone from normal esophageal epithelia of 9/9 patients with Barrett’s esophagus and concomitant esophageal adenocarcinoma. Moreover, we identified genes differentially expressed between the above subgroups. Thus, based on their corresponding normal esophageal epithelia alone, our method accurately diagnosed patients who had concomitant esophageal adenocarcinoma.Conclusions: These global gene expression patterns, along with individual genes culled from them, represent potential biomarkers for the early diagnosis of esophageal adenocarcinoma from normal esophageal epithelia. Genes discovered in normal esophagus that are differentially expressed in patients with vs. without esophageal adenocarcinoma merit further pursuit in molecular genetic, functional, and therapeutic interventional studies

    Beyond Field Effect: Analysis of Shrunken Centroids in Normal Esophageal Epithelia Detects Concomitant Esophageal Adenocarcinoma

    No full text
    Background and Aims Because of the extremely low neoplastic progression rate in Barrett's esophagus, it is difficult to diagnose patients with concomitant adenocarcinoma early in their disease course. If biomarkers existed in normal squamous esophageal epithelium to identify patients with concomitant esophageal adenocarcinoma, potential applications would be far-reaching. The aim of the current study was to identify global gene expression patterns in normal esophageal epithelium capable of revealing simultaneous esophageal adenocarcinoma, even located remotely in the esophagus. Methods Tissues comprised normal esophageal epithelia from 9 patients with esophageal adenocarcinoma, 8 patients lacking esophageal adenocarcinoma or Barrett's, and 6 patients with Barrett's esophagus alone. cDNA microarrays were performed, and pattern recognition in each of these subgroups was achieved using shrunken nearest centroid predictors. Results Our method accurately discriminated normal esophageal epithelia of 8/8 patients without esophageal adenocarcinoma or Barrett's esophagus and of 6/6 patients with Barrett's esophagus alone from normal esophageal epithelia of 9/9 patients with Barrett's esophagus and concomitant esophageal adenocarcinoma. Moreover, we identified genes differentially expressed between the above subgroups. Thus, based on their corresponding normal esophageal epithelia alone, our method accurately diagnosed patients who had concomitant esophageal adenocarcinoma. Conclusions These global gene expression patterns, along with individual genes culled from them, represent potential biomarkers for the early diagnosis of esophageal adenocarcinoma from normal esophageal epithelia. Genes discovered in normal esophagus that are differentially expressed in patients with vs. without esophageal adenocarcinoma merit further pursuit in molecular genetic, functional, and therapeutic interventional studies

    Analysis of promoter methylation, mRNA and protein expression of claudin-11 in gastric cell lines.

    No full text
    <p>This figure illustrates the claudin-11 promoter methylation, mRNA expression levels and protein expression in gastric cells lines. A) Quantitative methylation-specific PCR (qMSP) for <i>CLDN11</i>. Genomic DNAs isolated from immortalized human normal gastric epithelial cells (HFE145) and GC cell lines AGS, SIIA, MKN28, KATOIII, and SNU-1 obtained from ATCC were analyzed by qMSP. This Figure illustrates that the promoter region of <i>CLDN11</i> gene is hypermethylated in all GC cell lines relative to HFE145 cells. B) <i>CLDN11</i> mRNA expression in gastric cell lines. Total RNAs from different gastric cell lines were subjected to quantitative real-time RT-PCR analysis. As can be seen in this figure, HFE145 cells expressed very high levels of <i>CLDN11</i> mRNA, while all five cancer cell lines tested had very low or undetectable <i>CLDN11</i> mRNA expression. C) Western blot analysis of claudin-11 expression in gastric cell lines. Total cell lysates obtained from various gastric cell lines were probed with the anti-claudin-11 antibody. This figure illustrates that while the immortalized normal gastric epithelial cell line, HFE145, expressed abundant claudin-11 protein, it could not be detected in various GC cell lines. Anti-β-actin antibody was used as a loading control.</p
    corecore