39 research outputs found
Quantum engineering of superconducting structures: Principles, promise and problems
© Alexandre Zagoskin, 2017. Quantum technologies went through an explosive development since the beginning of the century. The progress in the field of superconducting quantum structures was especially fast. As the result, the design and characterization of large quantum coherent structures became an engineering problem. We will discuss the current status of the emerging discipline of quantum engineering and possible ways of meeting its main challenge, the fundamental impossibility of an efficient modelling of a quantum system using classical means. PACS: 85.25.-j Superconducting devices; 85.25.Am Superconducting device characterization, design, and modeling; 85.25.Cp Josephson devices
Renninger’s Gedankenexperiment, the collapse of the wave function in a rigid quantum metamaterial and the reality of the quantum state vector
A popular interpretation of the “collapse” of the wave function is as being the result of a local interaction (“measurement”) of the quantum system with a macroscopic system (“detector”), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of “physical reality” of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger’s experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a “non-measurement”, and make the concept of a physically real quantum state vector more acceptable
Quantum entanglement of flux qubits via a resonator
We show that flux qubits can be efficiently entangled by inductive coupling to a tunable resonant circuit, in the scheme reminiscent of atoms' entanglement through the optical cavity mode. It is shown, in particular, that the single-photon excitation of the resonator produces the pure Bell state of qubits with the completely disentangled LC circuit
Quantum metamaterials in the microwave and optical ranges
Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent 'artificial atoms' with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing
Entangling continuous variables with a qubit array
We show that an array of qubits embedded in a waveguide can emit entangled
pairs of microwave photon beams. The quadratures obtained from a homodyne
detection of these outputs beams form a pair of correlated continuous variables
similarly to the EPR experiment. The photon pairs are produced by the decay of
plasmon-like collective excitations in the qubit array. The maximum intensity
of the resulting beams is only bounded by the number of emitters. We calculate
the excitation decay rate both into a continuum of photon state and into a
one-mode cavity. We also determine the frequency of Rabi-like oscillations
resulting from a detuning
Liouville invariance in quantum and classical mechanics
The density-matrix and Heisenberg formulations of quantum mechanics follow--for unitary evolution--directy from the Schr"odinger equation. Nevertheless, the symmetries of the corresponding evolution operator, the Liouvillian L=i[.,H], need not be limited to those of the Hamiltonian H. This is due to L only involving eigenenergy_differences_, which can be degenerate even if the energies themselves are not. Remarkably, this possibility has rarely been mentioned in the literature, and never pursued more generally. We consider an example involving mesoscopic Josephson devices, but the analysis only assumes familiarity with basic quantum mechanics. Subsequently, such _L-symmetries_ are shown to occur more widely, in particular also in classical mechanics. The symmetry's relevance to dissipative systems and quantum-information processing is briefly discussed
Quantum metamaterials in the microwave and optical ranges
Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent 'artificial atoms' with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing
Effects of lasing in a one-dimensional quantum metamaterial
Electromagnetic pulse propagation in a quantum metamaterial, an artificial, globally quantum coherent optical medium, is numerically simulated. We show that a one-dimensional quantum metamaterial based on superconducting quantum bits, initialized in an easily reachable factorized excited state, demonstrates lasing in the microwave range, accompanied by the chaotization of qubit states and generation of higher harmonics. These effects may provide a tool for characterization and optimization of quantum metamaterial prototypes
Bogoliubov-Born-Green-Kirkwood-Yvon chain and kinetic equations for the level dynamics in an externally perturbed quantum system
Theoretical description and simulation of large quantum coherent systems out of equilibrium remains a daunting task. Here we are developing a new approach to it based on the Pechukas-Yukawa formalism, which is especially convenient in case of an adiabatically slow external perturbation. In this formalism the dynamics of energy levels in an externally perturbed quantum system as a function of the perturbation parameter is mapped on that of a fictitious one-dimensional classical gas of particles with cubic repulsion. Equilibrium statistical mechanics of this Pechukas gas allows to reproduce the random matrix theory of energy levels. In the present work, we develop the nonequilibrium statistical mechanics of the Pechukas gas, starting with the derivation of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain of equations for the appropriate generalized distribution functions. Sets of approximate kinetic equations can be consistently obtained by breaking this chain at a particular point (i.e. approximating all higher-order distribution functions by the products of the lower-order ones). When complemented by the equations for the level occupation numbers and inter-level transition amplitudes, they allow to describe the nonequilibrium evolution of the quantum state of the system, which can describe better a large quantum coherent system than the currently used approaches. In particular, we find that corrections to the factorized approximation of the distribution function scale as 1/N, where N is the number of the "Pechukas gas particles" (i.e. energy levels in the system)
Harmonic mixing in two coupled qubits: Quantum synchronization via ac drives
Simulating a system of two driven coupled qubits, we show that the time-averaged probability to find one driven qubit in its ground or excited state can be controlled by an ac drive in the second qubit. Moreover, off-diagonal elements of the density matrix responsible for quantum coherence can also be controlled via driving the second qubit; that is, quantum coherence can be enhanced by appropriate choice of the biharmonic signal. Such a dynamic synchronization of two differently driven qubits has an analogy with harmonic mixing of Brownian particles forced by two signals through a substrate. Nevertheless, the quantum synchronization in two qubits occurs due to multiplicative coupling of signals in the qubits rather than via a nonlinear harmonic mixing for a classical nanoparticle. Quantum harmonic mixing proposed here can be used to manipulate one driven qubit by applying an additional ac signal to the other qubit coupled with the one we have to control