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Simulating a system of two driven coupled qubits, we show that the time-averaged probability to find one driven
qubit in its ground or excited state can be controlled by an ac drive in the second qubit. Moreover, off-diagonal
elements of the density matrix responsible for quantum coherence can also be controlled via driving the second
qubit; that is, quantum coherence can be enhanced by appropriate choice of the biharmonic signal. Such a
dynamic synchronization of two differently driven qubits has an analogy with harmonic mixing of Brownian
particles forced by two signals through a substrate. Nevertheless, the quantum synchronization in two qubits
occurs due to multiplicative coupling of signals in the qubits rather than via a nonlinear harmonic mixing for a
classical nanoparticle. Quantum harmonic mixing proposed here can be used to manipulate one driven qubit by
applying an additional ac signal to the other qubit coupled with the one we have to control.
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I. INTRODUCTION

While the desire to build code-cracking quantum computers
[1,2] remains a longstanding goal, its pursuit has pushed for-
ward the enormous progress achieved in quantum mesoscopic
physics and quantum nanodevices. These efforts have already
resulted in the development of a new class of mesoscopic
devices [3–6] and even new types of materials known as
quantum metamaterials [7,8].

The development of such new devices requires a deep
understanding of the dynamics of single and multiqubit
systems driven by both ac signals (e.g., electromagnetic
radiation or ac voltage and/or currents) and noise. Following
this direction of research, several quantum amplifiers have
been recently proposed for one- [9] and two-qubit [10,11]
systems. The idea [9,10] was to extend the stochastic resonance
phenomenon (amplification by certain amount of noise) for one
or two ac-driven qubits to enhance quantum coherence. Further
analogy [11–13] between two-qubit systems, a Brownian
particle driven in periodic substrate and a parametric amplifier,
has resulted in a proposal to use two coupled qubits as an
amplifier of quantum oscillations.

This work was motivated by the analogy between driven
Brownian nanoparticles and a system of coupled qubits.
It is well known that an overdamped particle driven by
two harmonic ac signals through the substrate can drift in
any desirable direction if frequencies of the two drives are
commensurate. This effect known as harmonic mixing [14–22]
has been already observed in many systems, including pseudo-
relativistic electrons in graphene, vortices in superconductors
[23], nanoparticles driven through a pore [24], current-driven
Josephson junctions [25], etc. This suggests an idea that a cou-
pled two-qubit system also should exhibit a harmonic mixing
behavior, but in contrast to the usual classical harmonic mixing
for overdamped particles, quantum harmonic mixing should be
via parametric coupling of two drives in the quantum master
equation. This effect can be used to synchronize quantum oscil-
lations in the two qubits and can control the average probability
for a qubit to stay in either ground or excited state by changing
the relative phase and/or frequencies of the biharmonic drive.

Further, our results can be applied to the case when one
needs to control qubits, which do not have their own control

circuitry for the reasons of limiting the decoherence brought
in by such extra elements or because of accessibility (e.g., in
case of 2D or 3D qubit arrays [26,27] with control circuitry
placed at the boundary, viz., surface of the device). Similar
problems arise in the so-called indirect quantum tomography
(see, e.g., Ref. [28]) or in quantum computations with access
to a limited number of qubits (see, e.g., Ref. [29]). In all
these cases, the proposed method of harmonic mixing in qubits
makes it possible to control the state of the second (not directly
accessible qubit) by varying the frequency and/or phase of the
first (accessible) qubit.

II. MODEL

In order to describe a two-qubit system we use a Hamilto-
nian in a spin-representation for each qubit with the so-called
σx − σx coupling:

H = −1

2

∑

j=1,2

[
�j σ j

z + εj (t) σ j
x

] + g σ 1
x σ 2

x , (1)

where σ
j
z and σ

j
x are Pauli matrices corresponding to either

the first (j = 1) or the second (j = 2) qubit. The tunneling
splitting energies �j are usually determined by the geometry
and fabrication details of the specific device, while the bias
energies εj can be driven externally. For simplicity, we
consider two identical qubits; that is, we assume �1 = �2 =
�. Let us drive the qubits by a controlled biharmonic drive:

ε1(t) = A1 sin(ω1t),

ε2(t) = A2 sin(ω2t + φ). (2)

In other words, each qubit is driven by its own signal and
amplitudes, frequencies, and relative phases of these two
signals can be varied at will. A question arises: if and under
what conditions can the second qubit influence the coherence
and occupation of the ground and excited states of the first
one? Therefore, we are interested in whether the second qubit
can be used to control the state of the first qubit via dynamic
synchronization of their quantum oscillations.
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The two-qubit density matrix ρ̂ can be written as

ρ̂ = 1

4

∑

a,b=0,x,y,z

�ab σ 1
a ⊗ σ 2

b . (3)

This is a straightforward generalization of the standard
representation of the single-qubit density matrix expression
using the Bloch vector; the components �ab thus constitute
what can be called the Bloch tensor. Then, the master equation,

dρ̂

dt
= −i[Ĥ (t),ρ̂] + 	̂ρ̂, (4)

can be written directly, using the standard approximation for
the dissipation operator 	̂ via the dephasing (	φ1,	φ2) and
relaxation (	1,	2) rates, to characterize the intrinsic noise in
the system. The master equation (3) can be explicitly written
as follows [10,11]:

�̇0x = �2�0y − 	φ2�0x,

�̇0y = −�2�0x + ε2(t)�0z − 2g�xz − 	φ2�0y,

�̇0z = −ε2(t)�0y + 2g�xy − 	2(�0z − ZT 2),

�̇x0 = �1�y0 − 	φ1�x0,

�̇y0 = −�1�x0 + ε1(t)�z0 − 2g�zx − 	φ1�y0,

�̇z0 = −ε1(t)�y0 + 2g�yx − 	1(�z0 − ZT 1),

�̇xx = �2�xy + �1�yx − (	φ1 + 	φ2)�xx,

�̇xy = −2g�0z − �2�xx + �1�yy

+ ε2(t)�xz − (	φ1 + 	φ2)�xy,

�̇yx = −2g�z0 − �1�xx + �2�yy

+ ε1(t)�xz − (	φ1 + 	φ2)�yx,

�̇xz = 2g�0y − ε2(t)�xy + �1�yz − (	φ1 + 	2)�xz,

�̇zx = 2g�y0 − ε1(t)�yx + �2�zy − (	φ2 + 	1)�zx,

�̇yy = −�1�xy − �2�yx

+ ε2(t)�yz + ε1(t)�zy − (	φ1 + 	φ2)�yy,

�̇yz = −�1�xz − ε2(t)�yy

+ ε1(t)�zz − (	φ1 + 	2)�yz,

�̇zy = −�2�zx − ε1(t)�yy

+ ε2(t)�zz − (	1 + 	φ2)�zy,

�̇zz = −ε1(t)�yz − ε2(t)�zy

− (	1 + 	2)(�zz − ZT 1ZT 2).

(5)

Also, for simplicity, hereafter we assume that the relax-
ation rates are the same for both identical qubits, that is,
	φ1 = 	φ2 = 	φ and 	1 = 	2 = 	r , and the temperature
is low enough, resulting in ZT 2 = ZT 1 = 1, where ZTj =
tanh(�j/2kBTj ) is the equilibrium value of the z component
of the Bloch vector, and �̇ab = d�ab/dt . This set of ordinary
differential equations is an ideal starting point for numerical
analysis of the dynamics of two driven and dissipative qubits
as it has been proved before [10,11]. We simulate these
differential equations for two differently driven qubits and
study quantum harmonic mixing.

In the limit of zero coupling, g = 0, there exists a solution
of Eqs. (5) with no entanglement between the qubits. This
solution can be written as a direct product of two independent
density matrices expressed through their Bloch vectors:

ρ̂j = 1
2 (1 + Xjσx + Yjσy + Zjσz). (6)

The components of the Bloch tensor �ab are all zero with the
exception of

(�ox,�oy,�oz) = (X1,Y1,Z1);

(�xo,�yo,�zo) = (X2,Y2,Z2), (7)

which are just the separate qubits’ Bloch vector components.
The density matrix components �ox = X1, �xo = X2, �oy =
Y1, �yo = Y2, �oz = Z1, and �zo = Z2 can be often directly
accessible in experiments. For instance, for two coupled flux
qubits the circulating currents in each qubit are proportional
to X1 or X2, respectively (see, e.g., Ref. [9]), while Z1 and
Z2 determine the occupation probabilities of the upper (lower)
level for the first and second qubits:

P±,j = 1
2 [1 ∓ Zj (t)], (8)

with j = 1 or 2.

III. SIMULATION RESULTS

We simulated the set (5) by using the standard Euler method
which has been proved to converge well for low-noise drives
[10,11] and analyzed the time-averaged diagonal element
of density matrix 〈X1〉 = 〈�ox〉 = limT →∞

∫ T

0 �oxdt/T , re-
sponsible for the mean coherence in the first qubit, as well
as the time-averaged density matrix element 〈Z1〉 = 〈�oz〉 =
limT →∞

∫ T

0 �ozdt/T , responsible for the mean occupation of
the ground and excited states in the first qubit. To verify the
validity of our numerical results we have also used higher-order
multiderivative methods to prove the stability of our numerical
procedure (compare the open circles for Euler methods and the
solid circles for the second-order method in Figs. 1 and 2).

As we expected, there is no mean coherence 〈X1〉 ≈ 0 for
most of frequency ratio ω1/ω2 apart from the specific commen-
surate cases [e.g., ω1/ω2 = 2/5,4/5,2,4; see Fig. 1(a)]. Such a
situation reminds one of a usual classical harmonic mixing for
nanoparticles (see, e.g., [21]); however, the frequency ratios
where peaks occur are also tunable by changing the absolute
value of signal frequency in either the first or the second
qubit. Indeed, choosing the frequency ω1 to be equal to the
interlevel spacing frequency ω1 =

√
�2 + g2 − g [Fig. 1(a)]

or ω1 = 2
√

�2 + g2 [Fig. 2(a)] or even away from the
interlevel resonances ω1 = 2.113(

√
�2 + g2 − g) [Fig. 2(b)]

results in a qualitatively similar peak structure, but which
shows a different sequence of the frequency ratios. Indeed,
for ω1 = 2.113(

√
�2 + g2 − g) [Fig. 2(b)], several new fre-

quency ratios corresponding to the enhancement of qubit co-
herence occur at ω2/ω1 = 2/5,4/5,6/5,8/5,2,12/5,14/5,4.
Moreover, some peaks can even change their signs [compare
peaks at ω2/ω1 = 4/5 in Figs. 1(a), 2(a), 2(b)], indicating that
both the frequency ratio and the absolute value of frequency
can be used to tune qubit harmonic mixing. Such a behavior
is quite unusual with respect to classical harmonic mixing
(see, e.g., [16]), where the frequency ratio is defined by the
nonlinearity of the system. In contrast, the master equation
set (5) is linear and harmonic mixing occurs via a mixture of
multiplicative drives as in the qubit parametric oscillator. As
we have recently shown, this results in a quite unusual spectra
of �a,b and in particular X1 and Z1 with many harmonic peaks

065803-2



BRIEF REPORTS PHYSICAL REVIEW A 86, 065803 (2012)

FIG. 1. (Color online) Time-averaged Bloch tensor components
〈X1〉 = 〈�0x〉 (a) and 〈Z1〉 = 〈�0z〉 (b) measured in arbitrary units for
two coupled qubits driven by the two harmonic drives (2) with param-
eters: A1 = A2 = 10, φ = 0, ω1 = 2

√
�2 + g2 and the averaging-

time interval 5.6 × 104 < ωt t < 1.4 × 105 (thus, averaging time T

was 8.4 × 104/ω1). Other parameters are the simulation step dt =
1.13 × 10−5, the number of simulation steps 5 × 109, damping 	 =
10−3, coupling constant g = 1, and the tunneling splitting energies
� = 1. To verify our numerical results we simulate by using both
Euler (open circles) and second-order multiderivative methods (solid
circles). The time-averaged Bloch tensor element 〈X1〉 responsible
for the qubit coherence shows peaks at ω2/ω1 = 2/5,4/5,2,4, while
the time-averaged component 〈Z1〉 peaks at ω2/ω1 = 3/5,9/10,3,5.
Also, pumping of the excited state for incommensurate frequencies
is clearly seen: |〈Z1〉| increases for ω2 � 2ω1. By simulating the
ten-times-denser point mesh for frequency ratios from 0.01 to 1
[see inset in (a)] we have obtained extra commensurate resonance
frequency ratios but still could not resolve width resonances, which
is consistent (see, e.g., Ref. [21]) with zero-width harmonic mixing
resonances in classical nonlinear devices, where the response near
resonances behave as cos �ωT , where T is the observation time and
�
 is detuning. In order to check whether we have a similar behavior
for qubit harmonic mixing, we have simulated 〈Z1〉 and 〈X1〉 [panels
(c) and (d), respectively] near resonances ω2/ω1 = 3 and 2 with
frequency detuning �ω < 1/T and observed finite resonance width
and oscillations near resonances similar to classical harmonic mixing.

showing complex hierarchy. This can explain a nontrivial
behavior of harmonic mixing changes when varying ω1 or

FIG. 2. (Color online) Time-averaged Bloch tensor components
〈X1〉 = 〈�0x〉 measured in arbitrary units for two coupled qubits
driven by the two harmonic drives [Eq. (2)] with the same pa-
rameters as in Fig. 1 and driving frequency ω1 = √

�2 + g2 − g

(a) equal to an energy level transition frequency [11] and for
ω1 = 2.113(

√
�2 + g2 − g) (b), which is away from the energy-level

transition. Simulations with a ten-times-denser point mesh for a
frequency ratio from 0.01 to 1 [see inset in (a)] uncovered some
extra commensurate frequency ratio where peaks in 〈X1〉 occurs.

ω2. Note also that the quantum harmonic mixing occurs in
both cases: when (i) ω1 is equal to interlevel spacing and
(ii) away from this situation. Therefore, there is no need to
tune the parameters of the external drives to any characteristic
internal frequency of the two-qubit system to observe quantum
harmonic mixing.

We have also observed a similar harmonic mixing in time-
averaged matrix element 〈Z1〉 responsible for the occupation
of the excited and ground states [Fig. 1(b)]. Interestingly,
the peaks in 〈Z1〉 occur at different ratios of biharmonic
drive ω2/ω1 = 3/5,9/10,3,5. However, such a behavior is
perfectly consistent with the harmonic spectra of 〈Z1〉 and
〈X1〉 studied in [11]. Indeed, the spectrum of X1 contains
only odd harmonics, while the spectrum of Z1 consist of
even harmonics, in agreement with the fact that peaks of
〈X1〉 and 〈Z1〉 have a different parity. Moreover, apart from
the peaks at the specific commensurate frequencies, the
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FIG. 3. (Color online) Dependence of 〈X1〉 and 〈Z1〉 (measured in
arbitrary units) on the relative phase of two drives of the biharmonic
signal at different frequency ratio ω2/ω1 = 2 (a), 3 (b), 4 (c). All
other parameters are the same as in Fig. 1. For even frequency ratio,
where 〈X1〉 has a peak (Fig. 1), the strong dependence of 〈X1〉(ϕ) and
a week dependence of 〈Z1〉(ϕ) occurs, while, for odd ratio of ω2/ω1,
dependence of 〈Z1〉(ϕ) is clearly seen and 〈X1〉(ϕ) is negligible.
The periods of functions 〈X1〉(ϕ) and 〈Z1〉(ϕ) are controlled by the
frequency ratio and are equal to 2πω1/ω2 (for ω2 > ω1).

value of |〈Z1〉| gradually increases with the frequency for
ω2 � 2ω1, indicating pumping in the excited state even for
incommensurate frequencies.

Following the analogy with classical harmonic mixing [21],
we expect the dependence of 〈X1〉 and 〈Z1〉 on the relative
phase ϕ of biharmonic drive at commensurate frequencies

where peaks have been observed. Indeed, we obtained such a
dependence [〈X1〉(ϕ) and 〈Z1〉(ϕ) shown in Figs. 3(a)–3(c)] for
the same simulation parameters as in Fig. 1 and for frequency
ratios ω2/ω1 = 2 (a), 3 (b), 4 (c). The well-resolved peaks
of 〈X1〉 at even frequency ratios ω2/ω1 = 2 and 4 exhibit a
strong dependence on relative phase, while very weak peaks
of 〈Z1〉 at these frequency ratios show almost no dependence
on ϕ. Comparing Figs. 3(a) and 3(c), we also conclude
that periodicity of the 〈X1〉(ϕ) changes with increasing
frequency ratio following the rule: 〈X1〉(ϕ + 2πω1/ω4) =
〈X1〉(ϕ). Therefore, the number of full oscillations increases
with frequency ratio ω2/ω1. This dependence of the ϕ periods
of 〈X1〉 and 〈Z1〉 oscillations on the frequency ratio of the
harmonic drives is analogous to the similar dependence of
classical harmonic mixing of a Brownian particle driven by
biharmonic drive on nonlinear substrate [21].

IV. CONCLUSIONS

We have predicted quantum harmonic mixing in a two-qubit
system driven by a biharmonic drive. It manifests itself in
a set of peaks of time-averaged density matrix components
responsible for both qubit coherence and occupation of ground
and excited states of the qubits. These peaks can be controlled
not only by the ratio of frequencies of the two signals but also
by tuning frequencies themselves and by relative phase of the
two signals. Such a quantum harmonic mixing can be used to
manipulate one driven qubit by applying an additional ac signal
to the other qubit coupled with the one we have to control.
Indeed, setting the frequency of the second qubit to be three
times larger than the one of the first qubit and changing the
relative phase of signals in these qubits produces oscillations
of the density matrix element Z1 with amplitude of about 0.1
according to Fig. 3(b). Therefore, changing the driving signal
only in the second qubit should allow us to indirectly vary the
occupation probabilities of the upper level in the first qubit
between 47% and 58% [see Eq. (8)]. A stronger coupling
between the qubits should allow an even larger amplitude of
the indirect control of the occupation probability. This effect
is obviously robust to a reasonably strong decoherence and
energy dissipation in the system.
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