80 research outputs found

    ShaResNet: reducing residual network parameter number by sharing weights

    Full text link
    Deep Residual Networks have reached the state of the art in many image processing tasks such image classification. However, the cost for a gain in accuracy in terms of depth and memory is prohibitive as it requires a higher number of residual blocks, up to double the initial value. To tackle this problem, we propose in this paper a way to reduce the redundant information of the networks. We share the weights of convolutional layers between residual blocks operating at the same spatial scale. The signal flows multiple times in the same convolutional layer. The resulting architecture, called ShaResNet, contains block specific layers and shared layers. These ShaResNet are trained exactly in the same fashion as the commonly used residual networks. We show, on the one hand, that they are almost as efficient as their sequential counterparts while involving less parameters, and on the other hand that they are more efficient than a residual network with the same number of parameters. For example, a 152-layer-deep residual network can be reduced to 106 convolutional layers, i.e. a parameter gain of 39\%, while loosing less than 0.2\% accuracy on ImageNet

    Statistical Criteria for Shape Fusion and Selection

    Get PDF
    International audience—Surface reconstruction from point clouds often relies on a primitive extraction step, that may be followed by a merging step because of a possible over-segmentation. We present two statistical criteria to decide whether or not two surfaces are to be considered as the same, and thus can be merged. They are based on the statistical tests of Kolmogorov-Smirnov and Mann-Whitney for comparing distributions. Moreover, computation time can be significantly cut down using a reduced sampling based on the Dvoretzky-Keifer-Wolfowitz inequality. The strength of our approach is that it relies in practice on a single intuitive parameter (homogeneous to a distance) and that it can be applied to any shape, including meshes, not just geometric primitives. It also enables the comparison of shapes of different kinds, providing a way to choose between different shape candidates. We show several applications of our method, experimenting geometric primitive (planeand cylinder) detection, selection and fusion, both on precise laser scans and noisy photogrammetric 3D data

    Fast and Robust Normal Estimation for Point Clouds with Sharp Features

    Get PDF
    Proceedings of the 10th Symposium of on Geometry Processing (SGP 2012), Tallinn, Estonia, July 2012.International audienceThis paper presents a new method for estimating normals on unorganized point clouds that preserves sharp fea- tures. It is based on a robust version of the Randomized Hough Transform (RHT). We consider the filled Hough transform accumulator as an image of the discrete probability distribution of possible normals. The normals we estimate corresponds to the maximum of this distribution. We use a fixed-size accumulator for speed, statistical exploration bounds for robustness, and randomized accumulators to prevent discretization effects. We also propose various sampling strategies to deal with anisotropy, as produced by laser scans due to differences of incidence. Our experiments show that our approach offers an ideal compromise between precision, speed, and robustness: it is at least as precise and noise-resistant as state-of-the-art methods that preserve sharp features, while being almost an order of magnitude faster. Besides, it can handle anisotropy with minor speed and precision losses

    Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation

    Full text link
    Semantic segmentation of point clouds in autonomous driving datasets requires techniques that can process large numbers of points efficiently. Sparse 3D convolutions have become the de-facto tools to construct deep neural networks for this task: they exploit point cloud sparsity to reduce the memory and computational loads and are at the core of today's best methods. In this paper, we propose an alternative method that reaches the level of state-of-the-art methods without requiring sparse convolutions. We actually show that such level of performance is achievable by relying on tools a priori unfit for large scale and high-performing 3D perception. In particular, we propose a novel 3D backbone, WaffleIron, made almost exclusively of MLPs and dense 2D convolutions and present how to train it to reach high performance on SemanticKITTI and nuScenes. We believe that WaffleIron is a compelling alternative to backbones using sparse 3D convolutions, especially in frameworks and on hardware where those convolutions are not readily available.Comment: Accepted at ICCV23. Code available at https://github.com/valeoai/WaffleIro

    Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations

    Get PDF
    International audienceThe estimation of disparity maps from stereo pairs has many applications in robotics and autonomous driving. Stereo matching has first been solved using model-based approaches, with real-time considerations for some, but to-day's most recent works rely on deep convolutional neural networks and mainly focus on accuracy at the expense of computing time. In this paper, we present a new method for disparity maps estimation getting the best of both worlds: the accuracy of data-based methods and the speed of fast model-based ones. The proposed approach fuses prior disparity maps to estimate a refined version. The core of this fusion pipeline is a convolutional neural network that leverages dilated convolutions for fast context aggregation without spatial resolution loss. The resulting architecture is both very effective for the task of refining and fusing prior disparity maps and very light, allowing our fusion pipeline to produce disparity maps at rates up to 125 Hz. We obtain state-of-the-art results in terms of speed and accuracy on the KITTI benchmarks. Code and pre-trained models are available on our github: https://github.com/ ferreram/FD-Fusion
    • …
    corecore