21 research outputs found

    Biomaterial Integration in the Joint: Pathological Considerations, Immunomodulation, and the Extracellular Matrix

    Get PDF
    Defects of articular joints are becoming an increasing societal burden due to a persistent increase in obesity and aging. For some patients suffering from cartilage erosion, joint replacement is the final option to regain proper motion and limit pain. Extensive research has been undertaken to identify novel strategies enabling earlier intervention to promote regeneration and cartilage healing. With the introduction of decellularized extracellular matrix (dECM), researchers have tapped into the potential for increased tissue regeneration by designing biomaterials with inherent biochemical and immunomodulatory signals. Compared to conventional and synthetic materials, dECM-based materials invoke a reduced foreign body response. It is therefore highly beneficial to understand the interplay of how these native tissue-based materials initiate a favorable remodeling process by the immune system. Yet, such an understanding also demands increasing considerations of the pathological environment and remodeling processes, especially for materials designed for early disease intervention. This knowledge will avoid rejection and help predict complications in conditions with inflammatory components such as arthritides. This review outlines general issues facing biomaterial integration and emphasizes the importance of tissue-derived macromolecular components in regulating essential homeostatic, immunological, and pathological processes to increase biomaterial integration for patients suffering from joint degenerative diseases

    Synovial fluid profile dictates nanoparticle uptake into cartilage - implications of the protein corona for novel arthritis treatments

    Get PDF
    Objective: Drug delivery strategies for joint diseases need to overcome the negatively charged cartilage matrix. Previous studies have extensively investigated particle approaches to increase uptake efficiency by harnessing the anionic charge of the cartilage but have neglected to address potential interactions with the protein-rich biological environment of the joint space. We aimed to evaluate the effects of hard protein coronas derived from osteoarthritis (OA) and rheumatoid arthritis (RA) patient synovial fluids as well as the commonly used fetal calf serum (FCS) on nanoparticle (NP) uptake into tissues and cells. Methods: We developed a NP panel with varying PEGylation and incubated them with synovial fluid from either OA, RA patients or FCS. We evaluated the effects of the formed NP-biocorona complex uptake into the porcine articular cartilage explants, chondrocytes and monocyte cell lines and primary patient FLS cells. Proteins composing hard biocoronas were identified using a quantitative proteomics approach. Results: Formed biocoronas majorly impacted NP uptake into cartilage tissue and dictated their uptake in chondrocytes and monocytes. The most suitable NP for potential OA applications was identified. A variety of proteins that were found on all NPs, irrespective of surface modifications. NP-, and protein-specific differences were also observed between the groups, and candidate proteins were identified that could account for the observed differences. Conclusions: This study demonstrates the impact of protein coronas from OA and RA patient synovial fluids on NP uptake into cartilage, emphasizing the importance of biological microenvironment considerations for successful translation of drug delivery vehicles into clinics

    Androgen Receptors in Epithelial Cells Regulate Thymopoiesis and Recent Thymic Emigrants in Male Mice

    Get PDF
    Androgens have profound effects on T cell homeostasis, including regulation of thymic T lymphopoiesis (thymopoiesis) and production of recent thymic emigrants (RTEs), i. e., immature T cells that derive from the thymus and continue their maturation to mature naive T cells in secondary lymphoid organs. Here we investigated the androgen target cell for effects on thymopoiesis and RTEs in spleen and lymph nodes. Male mice with a general androgen receptor knockout (G-ARKO), T cell-specific (T-ARKO), or epithelial cell-specific (E-ARKO) knockout were examined. G-ARKO mice showed increased thymus weight and increased numbers of thymic T cell progenitors. These effects were not T cell-intrinsic, since T-ARKO mice displayed unaltered thymus weight and thymopoiesis. In line with a role for thymic epithelial cells (TECs), E-ARKO mice showed increased thymus weight and numbers of thymic T cell progenitors. Further, E-ARKO mice had more CD4(+)and CD8(+)T cells in spleen and an increased frequency of RTEs among T cells in spleen and lymph nodes. Depletion of the androgen receptor in epithelial cells was also associated with a small shift in the relative number of cortical (reduced) and medullary (increased) TECs and increased CCL25 staining in the thymic medulla, similar to previous observations in castrated mice. In conclusion, we demonstrate that the thymic epithelium is a target compartment for androgen-mediated regulation of thymopoiesis and consequently the generation of RTEs

    Physiological levels of estradiol limit murine osteoarthritis progression

    Get PDF
    Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms

    Theranostic Agent Combining Fullerene Nanocrystals and Gold Nanoparticles for Photoacoustic Imaging and Photothermal Therapy

    Get PDF
    Developing photoactivatable theranostic platforms with integrated functionalities of biocompatibility, targeting, imaging contrast, and therapy is a promising approach for cancer diagnosis and therapy. Here, we report a theranostic agent based on a hybrid nanoparticle comprising fullerene nanocrystals and gold nanoparticles (FGNPs) for photoacoustic imaging and photothermal therapy. Compared to gold nanoparticles and fullerene crystals, FGNPs exhibited stronger photoacoustic signals and photothermal heating characteristics by irradiating light with an optimal wavelength. Our studies demonstrated that FGNPs could kill cancer cells due to their photothermal heating characteristics in vitro. Moreover, FGNPs that are accumulated in tumor tissue via the enhanced permeation and retention effect can visualize tumor tissue due to their photoacoustic signal in tumor xenograft model mice. The theranostic agent with FGNPs shows promise for cancer therapy

    The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice

    Get PDF
    Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-α. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a non-functional ERα had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ERα for the effects of E2 and SERMs on bone mass in males. Three mouse models lacking either ERαAF-1 (ERαAF-1(0)), ERαAF-2 (ERαAF-2(0)) or the total ERα (ERα(−/−)) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, while it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ERα(−/−) or ERαAF-2(0) mice. However, the effects of E2 in orx ERαAF-1(0) mice were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERαAF-1 for the effects of SERMs, we treated orx WT and ERαAF-1(0) mice with Raloxifene (Ral), Lasofoxifene (Las), Bazedoxifene (Bza) or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency towards increased cortical bone parameters. Importantly, all SERM-effects were absent in the orx ERαAF-1(0) mice. In conclusion, ERαAF-2 is required for the estrogenic effects on all evaluated parameters, while the role of ERαAF-1 is tissue specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERαAF-1. Our findings might contribute to the development of bone specific SERMs in males

    Estrogen and 2-methoxyestradiol: regulation of arthritis, inflammation and reactive oxygen species

    Get PDF
    Rheumatoid arthritis (RA) is characterized by severe synovial inflammation, cartilage destruction, and immune-mediated bone loss. Estrogen ameliorates experimental RA, reducing both inflammation and bone loss. The inflamed tissues are damaged partly by innate immune cells producing reactive oxygen species (ROS). ROS can also regulate the immune system. This thesis aimed to investigate the regulation of inflammation and joint destruction by 17β-estradiol (E2) and its metabolite 2-methoxyestradiol (2me2). E2's and 2me2's immunomodulation were investigated both in experimental arthritis and in an unprovoked immune system. Both wild type (WT) mice and Catechol-O-methyltransferase (COMT)-deficient mice were used, as COMT metabolizes E2 into 2me2. Further, E2's regulatory role was investigated in WT mice or ROS-deficient mice (B10.Q.Ncf1*/*), in a model of osteoporosis and a local (LPS-induced) inflammation model. 2me2 ameliorated arthritis and bone mineral density (BMD), and regulated immune cells differently compared with E2. Treatment with high doses of 2me2 increased uteri weight, implying estrogen-receptor activation; 2me2 activated estrogen-response elements in a tissue-, and dose-dependent manner. Deficiency in the COMT enzyme only moderately affected the immune system, and males were more affected than females. In ovx-induced bone loss, ROS-deficient mice displayed reduced osteoclastogenesis compared to controls, but similar bone mineral density and immunological profiles. In LPS-induced inflammation, E2 treatment in WT mice shifted neutrophil infiltration to macrophage infiltration, while in ROS-deficient mice E2 treatment induced neutrophil infiltration and reduced the macrophages. In conclusion, E2's metabolite 2me2 can modulate arthritis and inflammation-triggered osteoporosis. At high doses 2me2 can induce estrogen receptor signaling. E2 together with ROS regulate inflammation and osteoclastogenesis. Understanding estrogenic cellular and molecular mechanisms are important for developing new arthritis and inflammationtreatments. Our results increase the understanding of estrogens' role in inflammation and motivate further investigations
    corecore