14 research outputs found

    Current Status of Intensified Neo-Adjuvant Systemic Therapy in Locally Advanced Rectal Cancer

    Get PDF
    The addition of 5-fluorouracil (5-FU) or its prodrug capecitabine to radiotherapy (RT) is a standard approach in the neo-adjuvant treatment of patients with rectal tumors extending beyond the muscularis propria (stage II) and/or with clinical evidence of regional lymph node metastases (stage III). According to European randomized trials, the combined treatment modality resulted in favorable local control rates as compared with radiotherapy (RT) alone, but no improvement was found regarding the occurrence of distant metastases or overall survival. In an effort to further enhance the response rates and to decrease the high incidence of distant metastases in locally advanced rectal cancer patients, the addition of other chemotherapeutical drugs and biologic agents as radiation sensitizers to neo-adjuvant 5-FU based chemoradiotherapy (CRT) has been recently investigated. The role of those agents is however questionable as first results from phase III data do not show improvement on pathologic complete remission and circumferential resection margin negative resection rates as compared to 5-FU based CRT, nevertheless an increased toxicity

    Phase II study of helical tomotherapy in the multidisciplinary treatment of oligometastatic colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complete metastasectomy provides a real chance for long-term survival in patients with oligometastatic colorectal cancer (CRC). For inoperable patients, we evaluated in this study intensity-modulated and image-guided radiotherapy (IMRT-IGRT) by helical tomotherapy.</p> <p>Methods</p> <p>Twenty-four CRC patients with ≤ 5 metastases were enrolled, receiving a dose of 50 Gy in fractions of 5 Gy. No limitations concerning dimension or localization of the metastases were imposed. Whole body PET-CT was performed at baseline and 3 months after the initiation of RT to evaluate the metabolic response rate according to PET Response Criteria in Solid Tumors (PERCIST) version 1.0.</p> <p>Results</p> <p>A total of 53 metastases were treated. Seventeen patients (71%) received previously ≥ 1 line of chemotherapy for metastatic disease, displaying residual (n = 7) or progressive (n = 10) metabolic active oligometastatic disease at time of inclusion. Most common sites were the lung, liver and lymphnodes. One patient (4%) experienced grade 3 dysphagia. Twenty-two patients were evaluated by post-treatment PET-CT. Twelve patients achieved a complete (n = 6) or partial (n = 6) metabolic response, resulting in an overall metabolic response rate of 55%. At a median follow-up of 10 months, 7 patients (29%) are in remission, of which 5 received previous chemotherapy with residual oligometastatic disease at time of inclusion. The actuarial 1-year local control, progression-free survival, and overall survival were 54%, 14% and 78%.</p> <p>Conclusions</p> <p>Helical tomotherapy delivering 10 fractions of 5 Gy resulted in a metabolic response rate of 55%, and appeared to be attractive as consolidation of inoperable oligometastatic disease after effective chemotherapy.</p> <p>Trial registration</p> <p>Eudract 2008-008300-40; <a href="http://www.clinicaltrials.gov/ct2/show/NCT00807313">NCT00807313</a></p

    Advances in radiotherapy and targeted therapies for rectal cancer

    No full text

    Case 1. Metastatic colon cancer to a multinodular goiter

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Lipid a radiosensitizes hypoxic EMT-6 tumor cells: Role of the NF-κB signaling pathway

    No full text
    Purpose: Lipid A has shown promising immunostimulatory effects in both experimental tumor models and advanced stage cancer patients. This study examines whether lipid A may directly modulate the radioresponse of tumor cells by activating inducible nitric oxide synthase (iNOS) or cyclooxygenase-2 (COX-2) through nuclear factor-κB (NF-κB) signaling. Methods and Materials: Hypoxic EMT-6 tumor cells were exposed to lipid A and analyzed for the level of COX-2 and iNOS by Western blotting and enzymatic assays. The hypoxic radioresponse of EMT-6 cells was estimated by clonogenic survival. The activation of NF-κB was examined by immunostaining of its p65 subunit and by luciferase reporter gene assay. Results: Lipid A dose-dependently increased the expression and activity of iNOS with a maximal effect at plasma achievable concentrations of 3-30 μg/mL. The COX-2 mediated production of prostaglandin E2 was constitutively high and further upregulated by lipid A. The radiosensitivity of hypoxic EMT-6 cells was increased up to 2.5 times and counteracted by the iNOS inhibitor aminoguanidine but not by the COX-2 inhibitor NS-398. The mechanism of radiosensitization was linked to NF-κB signaling, because its inhibition by phenylarsine oxide impaired both iNOS activation and radioresponse. Conclusions: Lipid A is an efficient hypoxic cell radiosensitizer at plasma relevant concentrations, which provides a rationale to combine lipid A with radiotherapy in further studies. © 2003 Elsevier Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    MS/MS-identification of proteins detected by SERPA from colorectal cancer cells exposed to hypoxia.

    No full text
    <p>Mapping of spots of interest resulting from the comparison described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076508#pone-0076508-g001" target="_blank">Fig.1</a> and list of identified proteins (p<0.001) obtained using lysates of HCT116 colorectal cancer cells.</p
    corecore