103 research outputs found

    Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5ā€‰h, 37ā€‰Ā°C). Antigen solution structures, MAIT cell activation potencies (EC50 3ā€“500ā€‰pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2ā€‰nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNĪ³, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation

    Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18ā€“dependent activation

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161+VĪ±7.2+ MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56+CD3āˆ’) showed robust up-regulation of IFNĪ³ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14+ monocytes. Overall, this evidence for IAV activation via an indirect, IL-18ā€“dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur

    Clinical Study The Current Practice of Screening, Prevention, and Treatment of Androgen-Deprivation-Therapy Induced Osteoporosis in Patients with Prostate Cancer

    Get PDF
    Introduction. ADT is used in the management of locally advanced and metastatic disease. The detrimental effect of ADT on bone density is well documented. This study assesses care gaps in screening, prevention and treatment of osteoporosis among prostate cancer patients. Methods. We conducted a retrospective cohort study for patients diagnosed with non-metastatic prostate cancer on ADT. Charts from a tertiary oncology center were assessed for utilization of DXA scan, prescription of calcium, vitamin D, calcitonin and bisphosphonates.Bivariate analysis was used to determine the effect of patient characteristics and likelihood for osteoporosis screening. Results. 149 charts were reviewed, with 3-year mean follow-up. 58.8% of men received a baseline DXA, of which 20.3% had a repeat DXA within their follow-up periods.In all, 28% were appropriately screened and managed for osteoporosis (received repeat DXA, bisphosphonate). In bivariate analysis, the number of ADT injections which correlate with the duration of androgen suppression was significantly associated with the number of DXA scans. Conclusions. Our study found a care gap in the screening, prevention, and treatment of osteoporosis in this population. Patients receiving the most ADT injections were more likely to be screened. Our results suggest healthcare providers treating prostate cancer are insufficiently screening and treating this susceptible population. We suggest baseline measurement of BMD at the initiation of ADT with periodic reassessment during therapy

    Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells

    Get PDF
    Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) alpha-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-D-ribityllumazine (rRL-6-CH2OH), specifically detect all human MAIT cells. Tetramer(+) MAIT subsets were predominantly CD8(+) or CD4(-)CD8(-), although a small subset of CD4(+) MAIT cells was also detected. Notably, most human CD8(+) MAIT cells were CD8 alpha(+)CD8 beta(-/lo), implying predominant expression of CD8 alpha alpha homodimers. Tetramer-sorted MAIT cells displayed a T(H)1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1-rRL-6-CH2OH tetramers detected CD4(+), CD4(-)CD8(-) and CD8(+) MAIT cells in V. 19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-beta repertoire, and although the majority of human MAIT cells expressed TRAV1-2-TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population

    An overview on the identification of MAIT cell antigens

    Get PDF
    Mucosal Associated Invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and chemistry, we discovered MAIT cell ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin (6-FP) generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing Ī±Ī² T cell receptors, and here we recount this discovery. This article is protected by copyright. All rights reserved

    When Does an Alien Become a Native Species? A Vulnerable Native Mammal Recognizes and Responds to Its Long-Term Alien Predator

    Get PDF
    The impact of alien predators on native prey populations is often attributed to prey naivetĆ© towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naivetĆ© and coexistence becomes possible, an introduced species must eventually become ā€˜nativeā€™. But when exactly does an alien become a native species? The dingo (Canis lupus dingo) was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta) recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris), we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus) or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naĆÆve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naĆÆve

    MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression

    Get PDF
    Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2RĪ³null mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or Ī³Ī“ T cells, and is characterized by production of interferon (IFN)-Ī³, tumor necrosis factor (TNF)-Ī± and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) VĪ²-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses
    • ā€¦
    corecore