1,127 research outputs found

    Reassembling gastrulation

    Get PDF
    During development, a single cell is transformed into a highly complex organism through progressive cell division, specification and rearrangement. An important prerequisite for the emergence of patterns within the developing organism is to establish asymmetries at various scales, ranging from individual cells to the entire embryo, eventually giving rise to the different body structures. This becomes especially apparent during gastrulation, when the earliest major lineage restriction events lead to the formation of the different germ layers. Traditionally, the unfolding of the developmental program from symmetry breaking to germ layer formation has been studied by dissecting the contributions of different signaling pathways and cellular rearrangements in the in vivo context of intact embryos. Recent efforts, using the intrinsic capacity of embryonic stem cells to self-assemble and generate embryo-like structures de novo, have opened new avenues for understanding the many ways by which an embryo can be built and the influence of extrinsic factors therein. Here, we discuss and compare divergent and conserved strategies leading to germ layer formation in embryos as compared to in vitro systems, their upstream molecular cascades and the role of extrinsic factors in this process

    Landscape fragmentation of the Natura 2000 network and its surrounding areas

    Get PDF
    Habitat loss from anthropogenic development has led to an unprecedented decline in global biodiversity. Protected areas (PAs) exist to counteract this degradation of ecosystems. In the European Union, the Natura 2000 (N2k) network is the basis for continent-wide conservation efforts. N2k is the world’s largest coordinated network of protected areas. However, threats to ecosystems do not stop at the borders of PAs. As measured by a landscape fragmentation metric, anthropogenic development can affect the interiors of PAs. To ensure the long-term viability of the N2k network of PAs, this paper attempts to quantify the degree to which N2k sites are insulated from development pressures. We use a comprehensive dataset of effective mesh density (seff) to measure aggregate fragmentation inside and within a 5 km buffer surrounding N2k sites. Our results show a strong correlation (RÂČ = 0.78) between fragmentation (seff) within and around N2k sites. This result applies to all biogeographical regions in Europe. Only a narrow majority (58.5%) of N2k sites are less fragmented than their surroundings. Remote and mountainous regions in northern Europe, the Alps, parts of Spain, and parts of eastern Europe show the lowest levels of fragmentation. These regions tend to hold the largest N2k sites as measured by area. In contrast, central and western Europe show the highest fragmentation levels within and around N2k sites. 24.5% of all N2k sites are classified as highly to very-highly fragmented. N2k PA age since initial protection does not correlate with the difference in exterior and interior fragmentation of N2k PAs. These results indicate that PAs in Europe are not sheltered from anthropogenic pressures leading to fragmentation. Hence, we argue that there is a high potential for improving PA efficacy by taking pre-emptive action against encroaching anthropogenic fragmentation and by targeting scarce financial resources where fragmentation pressures can be mitigated through enforced construction bans inside PAs

    A retrospective analysis of amputation rates in diabetic patients: can lower extremity amputations be further prevented?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lower extremity amputations are costly and debilitating complications in patients with diabetes mellitus (DM). Our aim was to investigate changes in the amputation rate in patients with DM at the Karolinska University Hospital in Solna (KS) following the introduction of consensus guidelines for treatment and prevention of diabetic foot complications, and to identify risk groups of lower extremity amputations that should be targeted for preventive treatment.</p> <p>Methods</p> <p>150 diabetic and 191 nondiabetic patients were amputated at KS between 2000 and 2006; of these 102 diabetic and 99 nondiabetic patients belonged to the catchment area of KS. 21 diabetic patients who belonged to KS catchment area were amputated at Danderyd University Hospital. All patients' case reports were searched for diagnoses of diabetes, vascular disorders, kidney disorders, and ulcer infections of the foot.</p> <p>Results</p> <p>There was a 60% reduction in the rate of amputations performed above the ankle in patients with DM during the study period. Patients with DM who underwent amputations were more commonly affected by foot infections and kidney disorders compared to the nondiabetic control group. Women with DM were 10 years older than the men when amputated, whereas men with DM underwent more multiple amputations and had more foot infections compared to the women. 88% of all diabetes-related amputations were preceded by foot ulcers. Only 30% of the patients had been referred to the multidisciplinary foot team prior to the decision of amputation.</p> <p>Conclusions</p> <p>These findings indicate a reduced rate of major amputations in diabetic patients, which suggests an implementation of the consensus guidelines of foot care. We also propose further reduced amputation rates if patients with an increased risk of future amputation (i.e. male sex, kidney disease) are identified and offered preventive treatment early.</p

    Development and Validation of the Information Systems Creative-Self-Efficacy Scale

    Get PDF
    High-performing information systems (IS) professionals harness creativity as they build systems to solve new and unstructured business problems. Psychology has developed useful scales and techniques for measuring creativity. However, being creative is not sufficient. IS professionals must also have confidence in their creative ability to succeed. The belief in one’s ability to be creative is termed creative self-efficacy (CreaSE). CreaSE is defined in the general business context, but scales are not thoroughly developed or refined. CreaSE has also never been studied in the IS context. We detail steps to develop and validate a theoretically-based measure of CreaSE as related to IS. Our process includes six datasets collected during refinement. Participants include business and IS students, online respondents, university professors, IS executives, and IS professionals. The validated instrument is a second-order formative measure with reflective first-order sub-constructs based on belief in cognitive ability, affect, domain knowledge, skills, and understanding of people

    Martin Wong Catalogue Raisonné

    Get PDF
    The Martin Wong Catalogue RaisonnĂ© (MWCR) is a direct access online project that documents the body of work produced by Martin Wong (1946–1999), an artist from the United States who came of age on the West Coast and whose best-known paintings are of life in the Lower East Side of Manhattan

    Zebrafish embryonic explants undergo genetically encoded self-assembly

    Get PDF
    Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order

    Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration

    Get PDF
    10.7554/eLife.42093.001Non-canonical Wnt signaling plays a central role for coordinated cell polarization and directed migration in metazoan development. While spatiotemporally restricted activation of non-canonical Wnt-signaling drives cell polarization in epithelial tissues, it remains unclear whether such instructive activity is also critical for directed mesenchymal cell migration. Here, we developed a light-activated version of the non-canonical Wnt receptor Frizzled 7 (Fz7) to analyze how restricted activation of non-canonical Wnt signaling affects directed anterior axial mesendoderm (prechordal plate, ppl) cell migration within the zebrafish gastrula. We found that Fz7 signaling is required for ppl cell protrusion formation and migration and that spatiotemporally restricted ectopic activation is capable of redirecting their migration. Finally, we show that uniform activation of Fz7 signaling in ppl cells fully rescues defective directed cell migration in fz7 mutant embryos. Together, our findings reveal that in contrast to the situation in epithelial cells, non-canonical Wnt signaling functions permissively rather than instructively in directed mesenchymal cell migration during gastrulation
    • 

    corecore