8 research outputs found

    Does Human Experimental Endotoxemia Impact Negative Cognitions Related to the Self?

    Get PDF
    A role of inflammatory processes in the pathophysiology of depression is increasingly recognized. Experimental endotoxemia offers an established model to induce transient systemic inflammation in healthy humans, and has been proposed as an experimental paradigm of depression. Indeed, different symptoms of depression can be observed during experimental endotoxemia, including negative mood or dysthymia as key symptoms of depression. Hopelessness and low self-esteem constitute common cognitive symptoms in depression, but have not been specifically assessed during endotoxemia. Thus, we pooled data from healthy volunteers who received low-dose endotoxin (i.e., 0.4 or 0.8 ng/kg lipopolysaccharide, LPS) or placebo in three randomized, controlled studies to investigate the effects of LPS on cognitive schemata related to depression. Validated questionnaires were used to assess self-esteem, hopelessness and the vulnerability factor intolerance of uncertainty after intravenous injection of LPS or placebo. Plasma tumor necrosis factor (TNF)-α and interleukin (IL)-6 were repeatedly assessed, along with self-reported mood. Because not all questionnaires were available from primary studies, data were analyzed in two separate data sets: In data set 1, self-esteem and intolerance of uncertainty were assessed in N = 87 healthy volunteers, who randomly received either 0.4 or 0.8 ng/kg LPS or placebo. In data set 2, hopelessness was measured in N = 59 volunteers who randomly received either LPS (0.8 ng/kg) or placebo. In both data sets, LPS-application led to significant increases in TNF-α and IL-6, reflecting systemic inflammation. Positive mood was significantly decreased in response to LPS, in line with inflammation-induced mood impairment. General self-esteem, intolerance of uncertainty and hopelessness did not differ between LPS- and placebo groups, suggesting that these negative cognitive schemata are not responsive to acute LPS-induced systemic inflammation. Interestingly, LPS-treated volunteers reported significantly lower body-related self-esteem, which was associated with increased TNF-α concentration. Thus, certain aspects of self-esteem related to physical attractiveness and sportiness were reduced. It is conceivable that this effect is primarily related to physical sickness symptoms and reduced physical ability during experimental endotoxemia. With respect to cognitive symptoms of depression, it is conceivable that LPS affects cognitive processes, but not negative cognitive schemata, which are rather based on learning and repeated experiences

    Pro-Inflammatory Th1 and Th17 Cells Are Suppressed During Human Experimental Endotoxemia Whereas Anti-Inflammatory IL-10 Producing T-Cells Are Unaffected

    No full text
    ObjectiveSepsis is one of the leading causes of the deaths in hospitals. During sepsis, patients are exposed to endotoxemia, which may contribute to the dysregulation of the immune system frequently observed in sepsis. This dysregulation leads to impaired pro-inflammatory responses and may increase the risk for secondary infections in sepsis. The experimental human endotoxemia model is widely used as a model system to study the acute effects of endotoxemia. Under physiological circumstances, the immune system is tightly regulated. Effector T-cells exert pro-inflammatory function and are restrained by regulatory T-cells (Tregs), which modulate pro-inflammatory effector responses. Endotoxemia may induce inadequate Treg activity or render effector T-cells dysfunctional. It was the aim of the study to investigate effector T-cell and Treg responses in an experimental human endotoxemia model.MethodsIn a cross-over designed placebo-controlled study, 20 healthy male volunteers received an intravenous injection of either lipopolysaccharide (LPS) (0.8 ng/kg body weight) or a placebo (saline 0.9%). CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and intracellular cytokine profiles were measured with flow cytometry at baseline and at repeated points after LPS/placebo injection. Complete blood cell counts were obtained with an automated hematology analyzer and cytokines were quantified by ELISA.ResultsCirculating neutrophils were significantly increased 2 h after LPS injection (p < 0.001) while absolute number of CD3+ T-cells, CD4+ T-cells, and CD8+ T-cells decreased (p < 0.001). Effector T-helper-cells (THs) showed a significant—but transient—decrease of pro-inflammatory IFNγ, interleukin (IL)-2, TNFα, and IL-17A production after LPS injection (p < 0.001). In contrast, the frequency of Treg and the capacity to produce IL-10 were unchanged (p = 0.21).ConclusionEffector THs fail to produce pro-inflammatory Th1-/Th17-associated cytokines after LPS challenge. In contrast, IL-10 production by Treg is not affected. Thus, endotoxemia-induced suppression of pro-inflammatory THs might be considered as a contributing factor to immunoparalysis in sepsis

    Acute inflammation and psychomotor slowing: Experimental assessment using lipopolysaccharide administration in healthy humans

    No full text
    Data from clinical and cross-sectional studies suggest that inflammation contributes to psychomotor slowing and attentional deficits found in depressive disorder. However, experimental evidence is still lacking. The aim of this study was to clarify the effect of inflammation on psychomotor slowing using an experimental and acute model of inflammation, in which twenty-two healthy volunteers received an intravenous injection of lipopolysaccharide (LPS, dose: 0.8 ​ng/kg body weight) and of placebo, in a randomized order following a double-blind within-subject crossover design. A reaction time test and a go/no-go test were conducted 3 ​h after the LPS/placebo injection and interleukin (IL)-6 and tumor necrosis factor (TNF)-α concentrations were assessed. No effect of experimental inflammation on reaction times or errors for either test was found. However, inflammation was related to worse self-rated performance and lower effort put in the tasks. Exploratory analyses indicated that reaction time fluctuated more over time during acute inflammation. These data indicate that acute inflammation has only modest effects on psychomotor speed and attention in healthy subjects objectively, but alters the subjective evaluation of test performance. Increased variability in reaction time might be the first objective sign of altered psychomotor ability and would merit further investigation

    The Co-inhibitor BTLA Is Functional in ANCA-Associated Vasculitis and Suppresses Th17 Cells

    No full text
    Objectives: The activation and inhibition of T-cells has been well-studied under physiological conditions. Co-inhibition is an important mechanism to keep effector T-cells in check. Co-inhibitors mediate peripheral self-tolerance and limit the immune response. Dysfunctional co-inhibition is associated with loss of T-cell regulation and induction of autoimmunity. Therefore, we investigated the co-inhibitor B- and T-Lymphocyte attenuator (BTLA) in ANCA-associated vasculitis (AAV). Methods: Fifty-six AAV patients and 32 healthy controls (HC) were recruited. Flow cytometry was performed to investigate the expression of BTLA on T-cells. Double negative T-cells were defined as CD3(+)CD4(-)CD8(-). To assess the functionality of BTLA, CFSE-labeled T-cells were stimulated in presence or absence of an agonistic anti-BTLA antibody. In addition, impact of BTLA-mediated co-inhibition on Th17 cells was studied. Results: AAV patients in remission had a decreased expression of BTLA on double negative T-cells (CD3(+)CD4(-)CD8(-)). On all other subtypes of T-cells, expression of BTLA was comparable to healthy controls. TCR-independent stimulation of T-cells resulted in down-regulation of BTLA on Th cells in AAV and HC, being significantly lower in HC. Co-inhibition via BTLA led to suppression of T-cell proliferation in AAV as well as in HC. As a result of BTLA mediated co-inhibition, Th17 cells were suppressed to the same extent in AAV and HC. Conclusion: BTLA expression is altered on double negative T-cells but not on other T-cell subsets in quiescent AAV. BTLA-induced co-inhibition has the capacity to suppress Th17 cells and is functional in AAV. Thus, BTLA-mediated co-inhibition might be exploited for future targeted therapies in AAV
    corecore