8 research outputs found

    A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application

    No full text
    Using cholesteric liquid-crystalline dispersion (CLCD) of DNA, we demonstrate that the molecularly organized systems may be used both for qualitative assessment of the degree of radiation-induced DNA damage, as well as for detection of radiation doses in a very wide range. The doses up to 500 Gy do not cause any significant changes in optical signals of DNA in solution. However, when irradiated molecules are used to prepare the CLCD by addition of crowding polymer, a clear correlation of its optical signals with an absorbed dose is observed. For example, at a dose of 500 Gy, a maximum drop in the circular dichroism (CD) signal for DNA solution and for CLCD formed from preliminary irradiated molecules is ≈20% and ≈700%, respectively. This approach can also be used to expand the dosimetric capabilities of DNA CLCD. Compared to the case of irradiation of ready-made DNA CLCD, formation of the dispersed system from irradiated DNA allows to increase its sensitivity by more than 2 orders of magnitude. A similar decrease in the CD signal (≈1.45-fold) is observed in these systems at the doses of 100 kGy and 200 Gy, respectively. This principal approach seems to be relevant for other biomolecules and molecularly organized systems

    A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application

    No full text
    Using cholesteric liquid-crystalline dispersion (CLCD) of DNA, we demonstrate that the molecularly organized systems may be used both for qualitative assessment of the degree of radiation-induced DNA damage, as well as for detection of radiation doses in a very wide range. The doses up to 500 Gy do not cause any significant changes in optical signals of DNA in solution. However, when irradiated molecules are used to prepare the CLCD by addition of crowding polymer, a clear correlation of its optical signals with an absorbed dose is observed. For example, at a dose of 500 Gy, a maximum drop in the circular dichroism (CD) signal for DNA solution and for CLCD formed from preliminary irradiated molecules is ≈20% and ≈700%, respectively. This approach can also be used to expand the dosimetric capabilities of DNA CLCD. Compared to the case of irradiation of ready-made DNA CLCD, formation of the dispersed system from irradiated DNA allows to increase its sensitivity by more than 2 orders of magnitude. A similar decrease in the CD signal (≈1.45-fold) is observed in these systems at the doses of 100 kGy and 200 Gy, respectively. This principal approach seems to be relevant for other biomolecules and molecularly organized systems

    Impact of the Spectral Composition of Kilovoltage X-rays on High-Z Nanoparticle-Assisted Dose Enhancement

    No full text
    Nanoparticles (NPs) with a high atomic number (Z) are promising radiosensitizers for cancer therapy. However, the dependence of their efficacy on irradiation conditions is still unclear. In the present work, 11 different metal and metal oxide NPs (from Cu (ZCu = 29) to Bi2O3 (ZBi = 83)) were studied in terms of their ability to enhance the absorbed dose in combination with 237 X-ray spectra generated at a 30–300 kVp voltage using various filtration systems and anode materials. Among the studied high-Z NP materials, gold was the absolute leader by a dose enhancement factor (DEF; up to 2.51), while HfO2 and Ta2O5 were the most versatile because of the largest high-DEF region in coordinates U (voltage) and Eeff (effective energy). Several impacts of the X-ray spectral composition have been noted, as follows: (1) there are radiation sources that correspond to extremely low DEFs for all of the studied NPs, (2) NPs with a lower Z in some cases can equal or overcome by the DEF value the high-Z NPs, and (3) the change in the X-ray spectrum caused by a beam passing through the matter can significantly affect the DEF. All of these findings indicate the important role of carefully planning radiation exposure in the presence of high-Z NPs

    Chemical Dosimetry Using Bisbenzimidazoles: Solvent-Dependent Fluorescence Response of Hoechst 33258 to Radiation Exposure

    No full text
    Bisbenzimidazoles have a broad spectrum of potential applications: radioprotectors, drug delivery vectors, antiviral agents, etc. At the same time, they seem to be promising fluorescent probes for radiation measurements. Therefore, in the present work, a fluorescent response to X-ray irradiation of Hoechst 33258, one of the most widely known representatives of the bisbenzimidazole family, was studied for the first time. Irradiation of the dye was performed in aqueous and organic solutions (DMSO and glycerol), as well as in their mixtures. It is shown that the reaction of the dye to radiation exposure is very versatile and may be controlled by the solvent properties, which makes it possible to build relationships between the absorbed dose and a wide variety of parameters of its fluorescence signal. For example, irradiation may induce fluorescence quenching caused by the degradation of the dye, a change in the position of the fluorescence band maximum due to the modification of the dye molecules or to the radiation-induced changes in the properties of the medium, as well as a fluorescence flare-up mediated by the changes in pH

    Radiosensitization by Gold Nanoparticles: Impact of the Size, Dose Rate, and Photon Energy

    No full text
    Gold nanoparticles (GNPs) emerged as promising antitumor radiosensitizers. However, the complex dependence of GNPs radiosensitization on the irradiation conditions remains unclear. In the present study, we investigated the impacts of the dose rate and photon energy on damage of the pBR322 plasmid DNA exposed to X-rays in the presence of 12 nm, 15 nm, 21 nm, and 26 nm GNPs. The greatest radiosensitization was observed for 26 nm GNPs. The sensitizer enhancement ratio (SER) 2.74 ± 0.61 was observed at 200 kVp with 2.4 mg/mL GNPs. Reduction of X-ray tube voltage to 150 and 100 kVp led to a smaller effect. We demonstrate for the first time that the change of the dose rate differentially influences on radiosensitization by GNPs of various sizes. For 12 nm, an increase in the dose rate from 0.2 to 2.1 Gy/min led to a ~1.13-fold increase in radiosensitization. No differences in the effect of 15 nm GNPs was found within the 0.85–2.1 Gy/min range. For 21 nm and 26 nm GNPs, an enhanced radiosensitization was observed along with the decreased dose rate from 2.1 to 0.2 Gy/min. Thus, GNPs are an effective tool for increasing the efficacy of orthovoltage X-ray exposure. However, careful selection of irradiation conditions is a key prerequisite for optimal radiosensitization efficacy
    corecore