260 research outputs found

    A time-dependent formulation of multi-reference perturbation theory

    Get PDF
    We discuss the time-dependent formulation of perturbation theory in the context of the interacting zeroth-order Hamiltonians that appear in multi-reference situations. As an example, we present a time-dependent formulation and implementation of second-order n-electron valence perturbation theory. The resulting time-dependent n-electron valence second-order perturbation theory (t-NEVPT2) method yields the fully uncontracted n-electron valence perturbation wavefunction and energy, but has a lower computational scaling than the usual contracted variants, and also avoids the construction of high-order density matrices and the diagonalization of metrics. We present results of t-NEVPT2 for the water, nitrogen, carbon, and chromium molecules and outline directions for the future

    A transformed framework for dynamic correlation in multireference problems

    Get PDF
    We describe how multirefence dynamic correlation theories can be naturally obtained as single-reference correlation theories in a canonically transformed frame. Such canonically transformed correlation theories are very simple and involve identical expressions to their single-reference counterparts. The corresponding excitations involve quasiparticles rather than the bare particles of the system. High-order density matrices (or their approximations) and the numerical metric instabilities common to multireference correlation theories do not appear. As an example, we formulate the Bogoliubov canonically transformed version of second-order M{\o}ller-Plesset perturbation theory and demonstrate its performance in hydrogen, water, nitrogen, and BeH2_2 bond dissociation

    Simulating X-ray absorption spectra with linear-response density cumulant theory

    Full text link
    We present a new approach for simulating X-ray absorption spectra based on linear-response density cumulant theory (LR-DCT) [A. V. Copan and A. Yu. Sokolov, J. Chem. Theory Comput., 2018, 14, 4097 - 4108]. Our new method combines the LR-ODC-12 formulation of LR-DCT with core-valence separation approximation (CVS) that allows to efficiently access high-energy core-excited states. We describe our computer implementation of the CVS-approximated LR-ODC-12 method (CVS-ODC-12) and benchmark its performance by comparing simulated X-ray absorption spectra to those obtained from experiment for several small molecules. Our results demonstrate that the CVS-ODC-12 method shows a good agreement with experiment for relative spacings between transitions and their intensities, but the excitation energies are systematically overestimated. When comparing to results from excited-state coupled cluster methods with single and double excitations, the CVS-ODC-12 method shows a similar performance for intensities and peak separations, while coupled cluster spectra are less shifted, relative to experiment. An important advantage of CVS-ODC-12 is that its excitation energies are computed by diagonalizing a Hermitian matrix, which enables efficient computation of transition intensities

    Time-dependent N-electron valence perturbation theory with matrix product state reference wavefunctions for large active spaces and basis sets: Applications to the chromium dimer and all-trans polyenes

    Get PDF
    In earlier work [A. Y. Sokolov and G. K.-L. Chan, J. Chem. Phys. 144, 064102 (2016)], we introduced a time-dependent formulation of the second-order N-electron valence perturbation theory (t-NEVPT2) which (i) had a lower computational scaling than the usual internally contracted perturbation formulation and (ii) yielded the fully uncontracted NEVPT2 energy. Here, we present a combination of t-NEVPT2 with a matrix product state (MPS) reference wavefunction (t-MPS-NEVPT2) that allows us to compute uncontracted dynamic correlation energies for large active spaces and basis sets, using the time-dependent density matrix renormalization group algorithm. In addition, we report a low-scaling MPS-based implementation of strongly contracted NEVPT2 (sc-MPS-NEVPT2) that avoids computation of the four-particle reduced density matrix. We use these new methods to compute the dissociation energy of the chromium dimer and to study the low-lying excited states in all-trans polyenes (C_4H_6 to C_(24)H_(26)), incorporating dynamic correlation for reference wavefunctionswith up to 24 active electrons and orbitals

    Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability

    Get PDF
    4 is an ab initio electronic structure program providing methods such as Hartree–Fock, density functional theory, configuration interaction, and coupled-cluster theory. The 1.1 release represents a major update meant to automate complex tasks, such as geometry optimization using complete-basis-set extrapolation or focal-point methods. Conversion of the top-level code to a Python module means that Psi4 can now be used in complex workflows alongside other Python tools. Several new features have been added with the aid of libraries providing easy access to techniques such as density fitting, Cholesky decomposition, and Laplace denominators. The build system has been completely rewritten to simplify interoperability with independent, reusable software components for quantum chemistry. Finally, a wide range of new theoretical methods and analyses have been added to the code base, including functional-group and open-shell symmetry adapted perturbation theory, density-fitted coupled cluster with frozen natural orbitals, orbital-optimized perturbation and coupled-cluster methods (e.g., OO-MP2 and OO-LCCD), density-fitted multiconfigurational self-consistent field, density cumulant functional theory, algebraic-diagrammatic construction excited states, improvements to the geometry optimizer, and the “X2C” approach to relativistic corrections, among many other improvements
    • …
    corecore