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Abstract

Psi4 is an ab initio electronic structure program providing methods such as Hartree–

Fock, density functional theory, configuration interaction, and coupled-cluster theory.

The 1.1 release represents a major update meant to automate complex tasks, such as

geometry optimization using complete-basis-set extrapolation or focal-point methods.

Conversion of the top-level code to a Python module means that Psi4 can now be

used in complex workflows alongside other Python tools. Several new features have

been added with the aid of libraries providing easy access to techniques such as den-

sity fitting, Cholesky decomposition, and Laplace denominators. The build system

has been completely rewritten to simplify interoperability with independent, reusable

software components for quantum chemistry. Finally, a wide range of new theoret-

ical methods and analyses have been added to the code base, including functional-

group and open-shell symmetry adapted perturbation theory (F-SAPT and O-SAPT),

density-fitted coupled cluster with frozen natural orbitals [DF-FNO-CCSD(T)], orbital-

optimized perturbation and coupled-cluster methods (e.g., OO-MP2 and OO-CCSD),

density-fitted multiconfigurational self-consistent field (DF-MCSCF), density cumulant

∗To whom correspondence should be addressed
†Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry,

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-

0400, United States
‡National Institutes of Health – National Heart, Lung and Blood Institute, Laboratory of Computational

Biology, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
¶Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,

United States
§Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031,

United States
‖Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
⊥Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, Califor-

nia 91125, United States
#Department of Chemistry, Centre for Theoretical and Computational Chemistry, UiT, The Arctic Uni-

versity of Norway, N-9037 Tromsø, Norway
@Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
△Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-

ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
∇Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
††Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United

States
‡‡Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
¶¶Department of Chemistry, Bethel University, St. Paul, Minnesota 55112, United States

3

Page 4 of 52

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



functional theory (DCT), algebraic-diagrammatic construction [ADC(2)] excited states,

improvements to the geometry optimizer, and the “X2C” approach to relativistic cor-

rections, among many other improvements.

1 Introduction

Quantum chemical computations have become an indispensable part of molecular science.

They can provide accurate molecular geometries, reaction mechanisms and energetics, and

simulated spectra. Quantum chemistry also yields parameters needed to develop force-field

models, and as such serves to anchor multiscale modeling efforts. Advances in electronic

structure theory and in computer hardware have meant that quantum chemistry is now

capable of giving very accurate results for systems with about three dozen atoms or less and

reasonably accurate results for hundreds of atoms.

Unfortunately, electronic structure methods are inherently complicated, and the com-

puter programs to implement them are quite lengthy. Fully featured quantum chemistry

program packages can easily reach more than one million lines of source code. Additionally,

it takes significant effort to optimize these codes so that they run as quickly as possible

(an important consideration, given that computations are very time-consuming for larger

molecules and/or more accurate models). Thus, most of the popular quantum chemistry

programs have been developed over many years through the combined efforts of numerous

programmers and often several research groups. This model of large, complex codes devel-

oped by multiple programmers over many years presents a tremendous challenge to keeping

up with the rapid pace of recent innovations in computer hardware, including the increasing

number of central processing unit (CPU) cores per node, the ubiquity of graphics processing

units (GPUs), and emerging hardware like Intel’s Xeon Phi. It also presents a challenge to

the rapid deployment of new techniques from electronic structure theory, because typically

a desirable new feature is re-implemented for each quantum chemistry package.

We believe that this current development model is unsustainable and that the future
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of quantum chemistry software development lies in a more modular approach, in which

small, independent teams develop reusable software components that can be incorporated

directly into multiple quantum chemistry packages, for example, as a library or standalone

program that has no dependency on any particular quantum chemistry program.1 For ex-

ample, libraries like Libint,2 libefp,3,4 CheMPS2,5–7 simint,8,9 Libxc,10,11 dkh,12,13 and

PCMSolver14,15 are written so that they can be called from multiple quantum chemistry

programs, and programs like dftd316 and MRCC17,18 have been developed so that they

are straightforward to interface to other packages. Several analysis and visualization tools

(e.g., WebMO,19 Molden,20,21 and VMD22,23) have been written to analyze wavefunctions

with data written in common formats. Over the past few years, we have substantially re-

structured and extended key portions of the Psi4 quantum chemistry package to facilitate

interoperability with such reusable software components (or even with other large quantum

chemistry programs).

Our build system, driver, and binary distribution system have been redesigned to make

it easier for Psi4 to call independent software components. At the same time, we have

also made Psi4 callable as a Python library, so that it can be incorporated into complex

workflows driven by custom Python scripts or interfaced with other scientific Python projects,

of which there has been an explosion in the past few years. Wrapping much of the C++

functionality of Psi4 by Python has not only enabled interoperability, but it has also led to

more rapid prototyping and development of complex functionality. Interoperability has also

been enhanced by the addition of functions to write out data in common file formats used by

quantum chemistry analysis tools, e.g., Molden format for molecular orbitals and formatted

checkpoint files.

By moving our development system to a publicly viewable GitHub24 repository and by

incorporating social coding practices, we have made it easier for independent developers to

interface their work to Psi4. Completely independently of the Psi4 developers, interfaces

to Psi4 have been developed for a number of projects, including GeomeTRIC,25,26 a ge-
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ometry optimization code that includes the translation-rotation-internal coordinate (TRIC)

system; JANPA, a Java-based implementation of the Natural Population Analysis (NPA)27

method;28,29 an implementation30 of the restrained electrostatic potential (RESP) method

for fitting atomic charges;31 and htmd, a force-field parameterization tool.32

We have used object-oriented design to make certain key functionalities available through

a generic application program interface (API), while allowing optimizations or adaptations to

various hardware to be done “under the hood” without necessitating changes to the top-level

code that implements a particular quantum chemistry method. For example, this allows

us to transparently switch among different libraries to compute electron repulsion integrals,

depending on which is optimal for a particular type of hardware. Finally, we have also

added libraries to enable techniques that are becoming more important in modern quantum

chemistry, such as density fitting33–41 and Cholesky decomposition.42–46

Here we summarize our efforts to modularize and extend Psi4 along these lines. We also

report on additional new capabilities of the package. This article, and its author list, reflects

primarily the changes since the previous Psi4 publication,47 written at the stage of an alpha

release. The Psi4 1.1 release carries over much of the design, code, and capabilities of that

earlier version of Psi4 and also retains some code and capabilities from Psi3.48

2 Python Interface

In the alpha release of Psi4 in 2012,47 we introduced a Python front-end to what had

previously been an exclusively C/C++ program. All computationally intensive modules

remain written in C++ for efficiency reasons, but user input parsing and simple, high-level

functions that help drive the program are written in Python.

6
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2.1 Using Python to Parse User-Friendly Input and Automate Multi-

Step Computations

One of the design goals of Psi4 is to make the program as easy to use as possible, for both

beginners and expert users. For beginners, a minimal input suffices for basic computations.

Indeed, one does not even need to specify atomic coordinates — for common molecules,

these can be obtained from the PubChem database (for nodes with internet connectivity).49

An input file to optimize the geometry of the benzene molecule using Hartree–Fock self-

consistent-field (SCF) with the STO-3G basis50 is as simple as this:

molecule benzene{

pubchem:benzene

}

set basis sto-3g

optimize("scf")

For a graphical user interface (GUI), the popular WebMO program19 is capable of drawing

molecules, generating text input files, managing a job queue, and visualizing orbitals and

other results.

Although many solutions would have sufficed to parse input files like the example above,

we also wished to allow much more complex input files by advanced users, who might want

to perform multi-step computations, execute loops to build a potential energy surface, create

tables and export data structures of results, or interface with other Python projects, all in

the input file. In this, we were inspired by the Molpro program,51 which enables looping

and post-processing operations.

Our approach is to use the Python language itself for input, yet allow free-form spec-

ification of common quantum chemical input (e.g., molecules, options, custom basis sets)

by intercepting and parsing them into proper Python commands. In this way, basic users

7
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submit minimal input files without any required knowledge of Python, while the inclined can

draw upon the full scientific Python ecosystem. This combination of simple quantum chem-

istry directives and user-specified Python code forms a domain-specific language, “Psithon,”

that has shown itself an effective balance between power and ease-of-use since its intro-

duction in alpha Psi4. Advanced users of quantum chemistry programs commonly write

workflow-automating helper scripts to aggregate computations, drive supporting executa-

bles, or extract key quantities. With Psi4 such functionality can be expressed directly in an

input file with conventional Python or, if a given functionality is popular, absorbed into the

Psi4 driver.

2.1.1 Specifying Levels of Theory, Basis Set Extrapolations, Corrections for

Basis Set Superposition Errors, and Many-Body Expansions of Clusters

In the 1.1 release, Psi4 has been significantly overhauled to make many common opera-

tions, which would normally be done by custom user scripts, as easy as specifying a single

input string. For example, the common notation of computational chemistry that sepa-

rates method and basis with a slash can be used, e.g., optimize("SCF/STO-3G"). This

idea can be extended to complete-basis-set (CBS) extrapolations, which can be expressed as

energy("SCF/cc-pV[D,T,Q]Z") to perform an exponential extrapolation of the SCF energy

using the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets.52 A two-point extrapolation of the cor-

relation energy can be specified in a similar way, e.g., energy("MP2/aug-cc-pV[T,Q]Z") for

second-order Møller-Plesset perturbation theory (MP2) in augmented basis sets.52,53 Depend-

ing on the method (SCF or post-SCF) and number of ζ-levels specified, extrapolation formu-

lae are selected automatically among 2- and 3-point Helgaker schemes for SCF energies54 and

2-point Helgaker for correlation energies.55 Alternate or user-defined (by writing a Python

function) extrapolation equations may be specified through additional keywords. For exam-

ple, opt("MP2/aug-cc-pV[T,Q]Z + D:CCSD(T)/cc-pV[D,T]Z", corl_scheme=myxtpl_2)

performs a focal point optimization with the coupled-cluster delta correction employing a

8
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custom formula for its 2-point extrapolation atop MP2 using the default 2-point Helgaker

formula. Importantly, the 1.1 release also generalizes these extrapolations to work also for ge-

ometry optimizations and vibrational frequencies, e.g., frequencies("MP2/cc-pV[D,T]Z")

for an MP2 extrapolated vibrational frequency computation.

In a similar way, corrections for basis set superposition errors (BSSE) can also be speci-

fied very simply: energy("MP2/aug-cc-pV[T,Q]Z", bsse_type="cp") for an MP2 extrap-

olated Boys-Bernardi counterpoise correction.56 For a molecular cluster, the Valiron-Mayer

functional counterpoise (VMFC) correction57 is also available. Molecular clusters can also

be analyzed in an N-body fashion in terms of dimers, trimers, etc. This is fully automated

by Psi4’s Python driver and can be called by altering the bsse_type argument to the usual

energy() function. Grep-able, tabulated, and programmatically accessible quantities for

each requested fragment and basis set partitioning combination are made available, and

multiple BSSE treatments can be computed concurrently.

Handling such complex operations with such minimal user input is the role of the Python

driver portion of Psi4. It contains generic functions like energy(), optimize(), and

frequencies(), which take a quantum chemistry method as an argument, then set ap-

propriate options based on user specifications and best practices for the method. The driver

then decides what C++ modules need to be called, and in what order. Results are passed

back from the C++ modules to the Python driver so that they can undergo various types of

post-processing (e.g., converting to other units, combining with results from other programs,

exporting as data structures, etc.). For composite and otherwise complex methods, the main

driver functions are often recursively called.

2.1.2 Passing Wavefunction Information

As the input to Psi4 computations is a single Python script, information may be passed

through objects in main memory. The 1.1 release greatly improves information passing

over the alpha release by allowing wavefunction objects to be passed between modules. For

9
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example, one could use density functional theory (DFT) orbitals as guess orbitals for a

complete-active-space self-consistent-field (CASSCF) procedure:

scf_e, scf_wfn = energy("bp86", return_wfn=True)

energy("casscf", ref_wfn=scf_wfn)

Additionally, one can obtain any method’s wavefunction and pass it to generic objects that

can write out or manipulate data: molden(), which writes Molden files; cubeprop(), which

writes densities and electrostatic potentials on a grid; and OEprop(), which computes arbi-

trary one-electron properties. For example, writing the optimized-orbital MP2 orbitals in

Molden format can be accomplished by the following:

omp2_e, omp2_wfn = energy("omp2", return_wfn=True)

molden(omp2_wfn, "omp2_orbitals.molden")

2.2 Rapid Prototyping

Much of the C++ infrastructure of Psi4 has been made accessible at the Python layer. This

provides opportunities for rapid prototyping of quantum chemical procedures in Python,

while leveraging the existing, efficient C++ infrastructure. Indeed, for some procedures

it is even possible to write the final, production-level version of the code by organizing

C++ calls completely in Python. Interoperability between C++ and Python was previously

accomplished using Boost Python,58 but in the 1.1 release we have removed Boost due to

its large size and build difficulties; we now use the header-only pybind11 library.59

Psi4 modules such as the “JK” object that generates Coulomb and exchange matrices

are readily available through Python:

# Create a JK object in the primary basis set

jk = psi4.core.JK.build(primary_basis)

# Provide an occupied orbital matrix for the density matrix:

10
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# D = C_left * C_right(T); by default C_right = C_left

jk.add_C_left(Cocc)

# Note that there are many possible sources for Cocc, e.g. sphericalized atomic

# orbitals, a converged SCF, etc., and these details are up to the user

# Perform the computation and get the J and K matrices

jk.compute()

J = jk.J()

K = jk.K()

As JK builds are the bottleneck in SCF computations, a Python-based SCF algorithm can

have nearly identical execution time to that of full C++ code. This is one of many cases where

the most computationally intensive parts of calculations can be handled by a Psi4 library,

resulting in top-level code that is easy to write, easy to understand, and computationally

efficient.

The Psi4NumPy project60 aims to enable the creation of clear, readable code for de-

velopment or pedagogical purposes by combining the extensive Python accessibility of Psi4

with the popular Numerical Python (NumPy)61 library for high-level array manipulation

and access to the BLAS library. The latest version of Psi4 adopts code from that project60

allowing Psi4 data and NumPy objects to be seamlessly interconverted. For example,

np_array = numpy.zeros((5, 5))

psi4_matrix = psi4.Matrix.from_array(np_array)

new_np_array = numpy.array(psi4_matrix)

2.3 Opportunities for Education in Electronic Structure Theory

Writing quantum chemistry code in this manner allows for the decoupling of learning quan-

tum chemistry from having to simultaneously learn a low-level programming language. As

11
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low-level languages typically have much steeper learning curves than high-level languages

like Python, this can be quite advantageous. We have leveraged the Python accessibility of

much of the Psi4 infrastructure to develop guided projects for students to write their own

Hartree–Fock code; several students in Georgia Tech’s Computational Chemistry course have

done this as a class project. One of us (D.G.A.S.) offered an introduction to electronic struc-

ture theory and programming in the summer of 2016 for summer students and new graduate

students, utilizing Psi4 and Psi4NumPy.

2.4 Psi4 as a Python Module

Finally, the most recent improvement in Psi4 is its ability to be loaded into a Python script

as a regular Python module. This ability has also opened up numerous opportunities to

integrate Psi4 with other powerful Python modules and related tools. For example, we

have been working on integrating Psi4 with the popular OpenMM package for molecular

mechanics. As both of these programs have Python front-ends, passing data between pro-

grams is straightforward. Psi4 can also be run interactively through Jupyter notebooks,62

which are like Mathematica notebooks for Python; intermediate results can be graphed and

analyzed with standard Python tools. We believe Jupyter notebooks hold promise as “lab

notebooks” (or supplementary information) for computational research, as well as for guided

computational chemistry laboratory exercises.

3 Interfaces to External Projects

The current model of quantum chemistry software development is one in which each quantum

chemistry package is a large “silo” of code standing independently of all the others. While it is

convenient for the user to have a package that contains many different features, it is wasteful

for different teams of developers to duplicate the effort of adding new features. It would be

better for specialists in a particular method to develop a reusable component that could be

12
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adopted by multiple programs. Psi4 strives to minimize the barrier to interoperability with

these add-ons by keeping their build and maintenance back-ends separate from Psi4, yet

maintaining a monolithic front-end for users. Since the beta versions of Psi4, all projects

not written by Psi4 core developers for Psi4 have been removed from the code repository;

the source instead resides in the author’s primary (upstream) repository where possible.

In their place are single “External Project” files that, when activated by ENABLE_<AddOn>

options, queue up the task of building that library from external source code using an internal

configuration or common set of build parameters and shared dependencies. This “superbuild”

framework is driven by the popular CMake tools.63 The External Project scheme ensures that

the footprint of each interfaced project within the Psi4 codebase consists of one build file

and typically half-a-dozen lines of linking and include directives. For greatest flexibility, all

quantum chemistry dependencies and add-ons that require linking or internal code activation

can be built from source (downloaded from GitHub or research websites) during the Psi4

build. Or, existing pre-built libraries can be detected and seamlessly linked in to the final

Psi4 library and plugin system. Wherever rational, shared and archive (static) libraries are

equally supported. Whenever possible, the changes to an external project’s build system

required by Psi4 have been accepted upstream to the main project. These typically consist

of a few short files that should prove useful to non-Psi4 users of the add-ons also.

Forming a clear delineation between Psi4 code and external projects simplifies build

maintenance but also permits better management and reuse of libraries so that core devel-

opers and users alike can access a full-featured Psi4 compilation without hassle. Invaluable

in this endeavor is Anaconda,64 a distribution of Python (and its associated package man-

ager, conda) that focuses on the scientific community and the cross-platform accessibility

of Python and Python/C++/Fortran binaries. Conda tools facilitate the construction of

relocatable (installable into any directory) and generic (executable on almost any OS dis-

tribution) binary packages, which are hosted at https://anaconda.org/psi4 for Mac and

Linux (and, through Ubuntu Terminal, recent versions of Microsoft Windows). To make
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binaries as foolproof as possible, while also maintaining the efficiency so vital to quantum

chemistry computations, a number of techniques are employed, including static linking of

high-quality math libraries, static linking of system libraries wherever possible,65 resolving

symbols to a widely available version of glibc, and turning off processor-specific optimiza-

tions (users wishing to obtain the full performance of processor-specific optimizations, which

vary from negligible to considerable, can activate these by building the project from scratch).

Conda packages are built for Psi4 itself and each of its add-ons. Each can be downloaded

individually or an environment specification can install a complete set. For the Psi4 devel-

oper, pointing CMake to that install location allows all the add-on and dependency libraries

to be detected and linked into Psi4 itself, drastically reducing the compile time and resulting

in a full-featured Psi4 build. For someone who wishes to use the Psi4 libraries to develop

quantum chemistry code as quickly as possible, C++ and Python Psi4 plugins can be devel-

oped from conda packages and conda compilers, without a local development environment.

For the user, the Psi4 conda package, some half-a-dozen add-on packages, and still more

non-quantum-chemistry dependencies are bundled up along with the conda package man-

ager into a standalone installer, available from http://psicode.org/downloads.html, that

unpacks into a Miniconda + Psi4 + AddOns release distribution.

For External Projects the Psi4 project will (1) leave control of their code under their

purview; (2) maintain any interfacing code needed; (3) regularly run integration tests between

Psi4 and their code; (4) build a mostly statically linked conda package so that any of their

users can obtain a pre-built binary distribution through conda install addon --channel

psi4; (5) provide a development sandbox for their code through Psi4 plugins; and (6) provide

conda download counts independent of Psi4. This maintain-in-pieces build-as-whole model

is working for add-ons that are executables, libraries, and plugins from languages C, C++,

and Fortran (and could be extended to proprietary or restricted license add-ons), as seen in

Figure 1.

Cognizant that the expanding interconnectivity of quantum chemical software demon-
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strated by Figure 1 does not end with Psi4 (especially now that Psi4 is a library more than

an executable) and that Psi4 has benefited from the flexible licensing terms of our add-ons,

the license for Psi4 itself has been relaxed from the GNU General Public License version 2 or

later (GPL-2.0+) to the GNU Lesser General Public License version 3 (LGPL-3.0), thereby

permitting Psi4 to be incorporated downstream without downstream projects inheriting

the GPL. The required dependencies have been minimized so that it is possible to build a

(non-full-featured) Psi4 without any GPL involvement, and a conda package meeting those

restrictions is distributed.

The following is a list of external projects integrated with Psi4.

• dftd3: This independent executable program by S. Grimme provides damped disper-

sion corrections for use with density functional theory.16 The latest version incorporates

modified damping parameters [-D3M and -D3M(BJ)] to better model short-range con-

tacts as described by Smith et al.66

• gCP: This “geometric counterpoise” executable by S. Grimme provides approximate

corrections for basis set superposition error based on the the molecular geometry, al-

lowing the implementation of the semiempirical methods HF-3c and PBEh-3c.67,68

• PCMSolver: This library by Di Remigio, Frediani, and coworkers14,15 implements

the widely used polarizable continuum model (PCM) for solvation.69–72 Within PCM,

the mutual solute-solvent polarization is represented by an apparent surface charge σ

spread over the cavity boundary and computed as the unique solution to the integral

equation associated to the classical Poisson problem,73 T̂ σ = −R̂ϕ, where the defini-

tion of the operators T̂ and R̂ depends on the molecular geometry and the Green’s

function for the differential problem at hand. This mathematical framework can be ap-

plied to complex environments, such as homogeneous isotropic, ionic, and anisotropic

liquids,73 and systems with interfaces.74–77 In the model, a molecular cavity built from

a set of interlocking atom-centered spheres is partitioned into a mesh of (curvilinear
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or planar) finite elements, to each of which is attached a finite basis set of piecewise-

regular polynomials that offer a natural discretization of the above equation into matrix

form.

• libefp: This library by Kaliman and Slipchenko3,4 implements the effective fragment

potential (EFP) method of Gordon and co-workers78,79 to provide ab initio force fields.

• MRCC: The high-order coupled-cluster methods available in the multi-reference coupled-

cluster program of Kállay and co-workers17,18 are accessible from Psi4.

• dkh: This library by Wolf, Reiher, and Hess implements the Douglas–Kroll–Hess

relativistic corrections between 2nd and 4th order.12,13

• Integrals: Psi4 is unusual in that it supports multiple electron repulstion integral (ERI)

libraries. We continue to support the Libint library (version 1),2 originally written

for Psi3. However, an interface layer called libmints allows us to replace Libint with

other integrals libraries, and we have written an interface to the erd library of Flocke

and Lotrich.80 Very recently, we have also interfaced to the new simint library of

Pritchard,8,9 optimized for architectures like the Intel Xeon Phi.

• CheMPS2: This library5–7 presents a spin-adapted implementation of the density

matrix renormalization group (DMRG) approach,81,82 which is an effective way to ap-

proximate complete active space configuration interaction (CAS CI) with much larger

active spaces (up to about 50 electrons in 50 orbitals for general problems). DMRG-

based complete active space self-consistent field (DMRG-CASSCF)83 and CASSCF

plus second-order perturbation theory (DMRG-CASPT2)84 are available through CheMPS2.

• gdma: Psi4 has been interfaced with the GDMA program of Stone,85 which provides

distributed multipole analysis of wavefunctions to represent the electrostatic field as a

sum of contributions from point charges, dipoles, etc., at atomic centers or other sites.
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• v2rdm_casscf: This plugin86 (requiring Psi4) implements a semidefinite program-

ming algorithm for the variational optimization of the ground-state two-electron reduced-

density matrix (2RDM). This variational 2RDM (v2RDM) approach is most useful as

an alternative to CAS CI for describing the electronic structure of an active space.

Unlike CAS CI, v2RDM methods can be applied to large active spaces comprised of

as many as 50 electrons in 50 orbitals. The plugin also provides a v2RDM-driven

CASSCF procedure that exploits density fitting technology for the treatment of large

numbers of external orbitals.87

• ambit: This library by Turney and co-workers88 provides tensors to represent quantum

chemistry quantities such as electron repulsion integrals or coupled-cluster amplitudes.

• cfour: We have nearly completed a prototype interface that allows Psi4 to drive

computations performed by the cfour package for coupled-cluster theory.89

• Forte: This plugin (requiring Psi4) by Li, Hannon, Schriber, Zhang, and Evange-

lista90 implements a number of multireference quantum chemistry methods, including

approaches based on the driven similarity renormalization group (DSRG)91 with per-

turbative92,93 and nonperturbative truncation schemes.94 Forte also implements two

new selected-CI approaches, the adaptive-95 and projector-CI.96

4 Development Process

Psi4 has adopted tools standard in the industry such as GitHub for collaboration and ver-

sion control, Travis CI97 for continuous integration testing, and CodeCov98 for test coverage

metrics. This ensures the primary source code retains its reproducibility and all code changes

can be reviewed by the entire Psi4 community. New developers feel safe making changes to

the base code, as all changes will be publicly visible and reviewed by the core team through

the GitHub “pull request” mechanism, and the changes will also be tested automatically by
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the Travis CI system. The public visibility of the GitHub project helps communication be-

tween developers, both within the core team and also with independent developers who want

their code to work with Psi4. Several improvements and bug fixes have been contributed

back to the Psi4 development team from the broader community.

5 Libraries

5.1 Density fitting

One of the major barriers to efficient electronic structure computations is the large number

of ERIs. For a set of one-particle spatial basis functions {φp(~r1)} (e.g., Gaussian atomic

orbitals, molecular orbitals), the ERIs are defined as

(pq|rs) ≡

∫∫
R6

d3r1 d3r2 φp(~r1)φq(~r1)
1

r12
φr(~r2)φs(~r2), (1)

where ~r1 and ~r2 denote the Cartesian coordinates of electrons 1 and 2, respectively, and r12 is

the distance between electrons 1 and 2. Each ERI encapsulates the electrostatic interaction

between a particle in the “pair-space” basis function ρpq(~r1) ≡ φp(~r1)φq(~r1) in coordinate

1 with another particle in pair-space basis function ρrs(~r2) ≡ φr(~r2)φs(~r2) in coordinate 2.

Despite the existence of a rich literature on the efficient evaluation of the ERIs in Gaussian

orbitals,99–101 the order-4 ERI tensor is a major bottleneck in terms of generation, storage

and utilization.

A particularly elegant approach to reducing the impact of the 4-index nature of the

ERIs in electronic structure theory begins from the observation that the quadratic-scaling

pair-space basis {ρpq(~r1)} is highly numerically redundant, particularly in large molecu-

lar systems and/or high-quality basis sets. Fortunately, the usual quadratic-scaling pair-

space basis can be accurately represented in a linear-scaling “auxiliary basis” {χA(~r1)}, e.g.,

ρpq(~r1) ≈
∑

A dApqχA(~r1), where dApq is an order-3 fitting coefficient tensor. This is the crux
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of the extremely successful Cholesky decomposition (CD)42–46 and density fitting (DF)33–41

approaches. In particular, we focus on the now-ubiquitous “Coulomb-metric” DF approach,

in which the ERI is approximated as

(pq|rs) ≈
∑
AB

(pq|A)(A|B)−1(B|rs) ≡ BC
pqB

C
rs. (2)

In the last step, and below, we assume that repeated indices are summed over. The use

of DF reduces the storage burden of the ERI tensor from order-4 to order-3. In addition,

transforming the integrals from the atomic orbital to molecular orbital basis now becomes

an O(n4) operation instead of an O(n5) operation. Moreover, the subsequent utilization of

the ERI tensor in contractions with density matrices or wavefunction amplitudes is often

considerably more efficient than with conventional integrals, due to reduced storage cost and

the occasional opportunity to achieve formal scaling reduction by the “unpinning” of the pq

and rs indices in the DF representation (i.e., this sometimes allows more efficient ways to

order the steps in the tensor multiplications). Coulomb-metric DF is exceedingly accurate,

with errors in relative properties of chemical interest (barrier heights, interaction energies,

etc.) generally lower than 0.05 kcal mol−1 when using standardized auxiliary fitting basis

sets.41

Coulomb-metric DF is utilized in many electronic structure methods in Psi4, as discussed

below. The use of DF to compress the molecular-orbital basis ERIs is so ubiquitous that we

have introduced a DFERI helper class to quickly construct the DF factorization for a given

set of orbital pair-spaces (including customized pair-spaces). An example of using the DFERI

object to build the DF factorization of the hole-particle integrals (ia|jb) ≈ B
Q
iaB

Q
jb (where i

and j indicate hole orbitals and a and b indicate particle orbitals) is presented below,

// Build a DFERI object with default options/orbital spaces

shared_ptr<DFERI> df = DFERI::build(primary,auxiliary,options);

// Request the decomposition (ia|jb) ~= B_ia^Q B_jb^Q for MP2
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df->add_pair_space("MP2", "ACTIVE_OCC", "ACTIVE_VIR");

// Compute the DF factorization

df->compute();

// Grab the DF tensor (on disk) for subsequent use

shared_ptr<Tensor> BiaQ = df->ints["MP2"];

This helper class shields the user from the specifics of forming the DF integrals: paralleliza-

tion over multiple cores, using Cauchy-Schwarz spatial sieving to remove insignificant pq

pairs in the AO basis DF integrals, applying the atomic orbital to molecular orbital integral

transform, locating the pseudoinverse of the fitting metric, and applying the fitting met-

ric. Additionally, if multiple pair-space tasks are requested, the generation of the integrals,

first-half integral transformation, and fitting metric inverse are coalesced to avoid redundant

effort. Thus, in just a few lines of client code, the user has access to DF factorizations that

are tractable on problems with up to ∼ 6000 basis functions, and can then focus on the

application of these DF tensors to implement their desired method.

5.2 JK object

A fundamental (and often quite computationally expensive) operation in myriad electronic

structure methods is the construction of one-electron “Coulomb” (Jpq) or “exchange” (Kpq)

matrices corresponding to a pre-specified generalized one-particle density matrix (Drs):

Jpq ≡
∑
rs

(pq|rs)Drs, (3)

Kpq ≡
∑
rs

(pr|qs)Drs. (4)

SCF, coupled-perturbed Hartree–Fock, configuration interaction singles, and many terms in

symmetry-adapted perturbation theory and multiconfigurational self-consistent-field (MC-

SCF) can be formulated in terms of these matrices. There are many approaches to efficiently

and/or exactly forming these matrices, including integral-direct, PK supermatrix,102 or den-
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sity fitting. To hide the details of these approaches from the user, we have introduced an ab-

stract JK class, implemented by any one of a number of DirectJK, DFJK, DiskJK, etc. classes.

After construction, the user interacts with the JK object in an abstract manner, requesting

J and K matrices without needing to know the details of how they are constructed. This

means that any method coded in terms of the JK object automatically can use DF, Direct, or

any other integral technology from the outset. An example of computing J and K matrices

at the Python layer was presented above in Section 2.2.

The density matrices supplied to the JK object are actually specified in terms of their

underlying factorization in terms of occupied orbital coefficients. This factorization naturally

occurs in most places that J and K matrices appear (and can always be achieved by supplying

the density and identity matrices as the factor tensors, if needed). However, endowing the JK

object with knowledge of the factorization and symmetry of the density matrix often allows

for significant performance gains, e.g., in DF Hartree–Fock.41

6 New Capabilities

6.1 Symmetry-Adapted Perturbation Theory (SAPT)

One of the specialties of Psi4 is a suite of symmetry-adapted perturbation theory (SAPT)103–105

codes for the analysis of noncovalent interactions.106 Previously, we had introduced ef-

ficient density-fitted and/or natural-orbital-accelerated implementations of SAPT0,107,108

SAPT2+3,109,110 and SAPT2+3 with a coupled-cluster doubles treatment of dispersion,

SAPT2+3(CCD).111 These allow the use of DF-SAPT0 on systems with up to ∼ 3500 basis

functions and the use of DF-SAPT2+3(CCD) on systems with up to ∼ 1200 basis func-

tions. Recently, we have extended the capabilities of the SAPT codes in Psi4 to broaden

their applicability beyond closed-shell dimers and to deepen the insight obtained. These

developments include the “functional group” SAPT (F-SAPT) decomposition,112,113 which

provides a partition of the SAPT0 energy at the chemical functional group level through
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references, allowing computations on high-spin radical dimers of unprecedented sizes. The

SAPT0 codes, and their F-SAPT, I-SAPT, and open-shell extensions, make substantial use

of the JK object and other libraries described in Section 5, which greatly accelerated the

implementation of these methods. Moreover, the use of these common library primitives

serve to “standardize” the tractability limits of all of the SAPT0-type methods, meaning

that they all are deployable to the same ∼ 3500 basis function scale.

6.2 Density-Fitted and Cholesky Decomposition Coupled-Cluster

Theory, with Frozen Natural Orbitals

One of the major additions to Psi4 since the alpha release is coupled-cluster theory utilizing

density-fitting or Cholesky decomposition approximations for the ERIs, as provided by the

libraries described in section 5.1. The DF/CD approximations substantially reduce the

input/output time associated with processing the ERIs. However, the rate-determining step

in coupled-cluster singles and doubles (CCSD)120 remains the same, scaling as O(o2v4),

where o and v are the number of occupied and virtual orbitals, respectively. Indeed, this

rate-determining step, the so-called particle-particle ladder term, becomes actually more

computationally costly in the DF/CD formalism, as one has to create the all-virtual ERIs

from the 3-index quantities in a step that scales as O(Nauxv
4), where Naux is the size of the

auxiliary index (the number of auxiliary basis functions in the DF approach, or the number

of Cholesky vectors in the CD approach). While technically only a fifth-power term, it is a

very expensive one, since Naux and v are both large compared to o.

We addressed this issue by using a synergistic approximation, frozen natural orbitals

(FNOs).121–124 These orbitals are better suited to truncating the virtual orbital subspace;

one can delete a significant fraction of the most weakly occupied natural orbitals with only a

minor impact on the total energy. Indeed, in our tests of intermolecular interaction energies

in the S22 test set,125 we performed computations with coupled-cluster through perturbative

triples [CCSD(T)] in which we deleted FNO virtual orbitals with occupation numbers less
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than 10−5. In an aug-cc-pVDZ basis set,52,53 the mean absolute error for this approximation

was only 0.012 kcal/mol when MP2 is used to approximately correct for the deleted FNO

virtual orbitals.126 The errors due to density fitting are an order of magnitude smaller than

this, about 0.001–0.002 kcal/mol when using the standard double-ζ density fitting auxiliary

basis sets.127 On the other hand, the combined DF/CD and FNO approximations can lead to

substantial speedups in some cases, particularly for intermolecular interactions when coun-

terpoise corrections are applied, because most of the “ghost” functions are weakly occupied

and can be effectively truncated by the FNO procedure. To compute the relatively small and

subtle three-body contribution to the interaction energy of the benzene trimer, we used a very

conservative 10−7 cutoff on the FNOs, and nevertheless the overall counterpoise-corrected

DF-FNO-CCSD(T)/aug-cc-pVDZ computation ran four times faster than the corresponding

conventional CCSD(T) computation.127 This allowed us to perform a large number of such

computations, which resulted in the first definitive resolution of the three-body contribution

to the lattice energy of crystalline benzene.128 Additional speedups of about 3x are possi-

ble using our version of the code optimized for GPUs.129 The MOLCAS130 and Q-Chem131

programs have also implemented coupled-cluster codes using DF and/or CD approximations

combined with FNOs or similar orbitals.132,133

6.3 Perturbation theory and coupled-cluster gradients

Analytic gradients have been implemented for MP2 and third-order Møller-Plesset pertur-

bation theory (MP3), using restricted Hartree–Fock (RHF) or unrestricted Hartree–Fock

(UHF) orbitals, with conventional integrals or with density fitting. From these codes, it

was straightforward134 to also implement “MP2.5,” which is a simple average of MP2 and

MP3.135 This method has been found134–136 to give rather accurate results for non-covalent

interaction energies at a substantially reduced cost compared to CCSD(T).

We have also recently added analytic gradients for CCSD and CCSD(T) with RHF or

UHF orbitals. In addition, we published the analytic gradients of density-fitted CCSD.137

25

Page 26 of 52

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The density fitting approximation, while speeding up the computation of certain terms, has

very little effect on geometries or vibrational frequencies.137,138

6.4 Optimized-Orbital Methods

In wavefunction methods, one typically uses canonical Hartree–Fock orbitals. However, it

is also possible to use orbitals that minimize the energy of the targeted post-Hartree–Fock

wavefunction; MCSCF would be a popular example. Minimizing the energy of other kinds of

wavefunctions with respect to orbital rotations is not nearly as well explored, but it has been

reported in the past for MP2139–142 and coupled-cluster doubles (CCD).120,143–145 The use of

optimized orbitals simplifies computation of response properties and means that orbital re-

sponse terms are already accounted for in analytic gradients. Additionally, optimized-orbital

(OO) CCD was found,144 like Brueckner CCD, to provide much better vibrational frequencies

for systems exhibiting artifactual spatial symmetry-breaking like NO3 and O+
4 .146,147

Psi4 provides extensive support for optimized-orbital wavefunction methods, including

an improved Newton-Raphson algorithm for the orbital optimization.148 Optimized-orbital

versions of MP2,148 MP3,149 MP2.5,150 linearized CCD,151 and CCD148 are implemented,

as well as standard or asymmetric (T) triples corrections152,153 to the latter.154 In addition,

analytic energy gradients are available for OO-MP2,150 OO-MP3,155 OO-linearized CCD,151

and OO-MP2.5.134 Density-fitted versions of the energies and gradients are also available for

MP2,156 MP3,157 MP2.5,157 and linearized CCD.158 For a set of weakly interacting dimers,

orbital optimization was found to maintain the good performance of Hartree–Fock-based

MP2.5 for closed-shell systems, but for open-shell systems, orbital optimization decreased

errors by a factor of 5 (leading to results better than the more expensive CCSD method).134

6.5 Density-Fitted Multi-Configurational Self-Consistent-Field

In Psi4 1.1 the MCSCF module has been completely rewritten using an approach similar to

the atomic-orbital formulation.159 This method is able to reduce the most computationally
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expensive pieces of MCSCF to J and K builds. There are several pieces of the pure atomic-

orbital formulation that do not scale well to large active spaces, and these pieces can be

supplied either by density-fitting techniques160 or transforming exact ERIs.

For flexibility, all methods of the MCSCF wavefunction object have been exported to

Python so that advanced MCSCF methods can be easily built.

cas_e, cas_wfn = energy("CASSCF", return_wfn=True)

# Compute the sigma vector for the current MCSCF state

inp_vec = cas_wfn.reference_civector()

out_vec = cas_wfn.new_civector()

cas_wfn.sigma(inp_vec, out_vec)

# Build an arbitrary two-particle density matrix between two vectors

tpdm = cas_wfn.tpdm(inp_vec, out_vec)

Using these flexible objects allows for the rapid exploration of various post-MCSCF theories.

For example, SAPT based on CASSCF wavefunctions is being developed in such a manner.

6.6 Density Cumulant Functional Theory

Psi4 is the only quantum chemistry program that features a publicly available implemen-

tation of density cumulant functional theory (DCT). Rather than describing electron corre-

lation using a many-electron wavefunction, as in conventional ab initio theories, DCT uses

the cumulant of the two-electron reduced density matrix.161 By parametrizing the cumulant

via a set of approximate constraints (also known as N -representability conditions), DCT

provides a way to directly obtain electronic density matrices and energies without explicitly

constructing the electronic wave function, thus making the computation of molecular proper-

ties (e.g., equilibrium structures, dipole moments, vibrational spectra) very efficient. Among
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other attractive features of DCT are size-extensivity, orbital relaxation, and the ability to

efficiently incorporate high-order electron correlation effects. The earlier version of Psi4 pre-

sented the first implementation162 of the original DCT formulation that used a simple set of

approximate N -representability conditions (the DC-06 method).161 In the Psi4 1.1 release,

several new DCT methods have been implemented, including an improved description of

the one-particle density matrix (DC-12),163 orbital-optimized DCT formulations (ODC-06

and ODC-12),164 and more sophisticated N -representability conditions and three-particle

correlation effects [ODC-13 and ODC-13(λ3)].165 These new methods have a similar compu-

tational cost as the original DC-06 method, but exhibit much higher accuracy, especially for

systems with unpaired electrons and significant multi-reference effects.166,167 The new DCT

code also features analytic gradients for the DC-06, ODC-06, and ODC-12 methods.164,168

Very recently, we introduced density fitting and spin-adaptation, which significantly reduce

the cost of the two-electron integral transformation for the orbital-optimized DCT methods

(e.g., ODC-12).169 Using this new DF-based implementation, it is now possible to perform

DCT computations with all electrons correlated for systems with more than 1000 basis func-

tions.

6.7 Algebraic-Diagrammatic Construction Excitation Energies

The latest version of Psi4 includes code to compute electronic excitation energies using the

second-order algebraic-diagrammatic construction scheme [ADC(2)].170 This can be thought

of as an excited state generalization of MP2. The code accounts for point-group symmetry

through the libdpd library, and it also includes a “partially renormalized” variant, PR-

ADC(2), meant to confer resistance against quasi-degeneracy, described in Ref. 171. It can

perform routine computations on +systems with ∼ 1000 basis functions.
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6.8 Geometry Optimizer

By default, the geometry optimizer uses redundant internal coordinates, but the ability

to alternatively use Cartesian or delocalized internal coordinates has been added since the

alpha release. The default optimization step is now the iterative, restricted one172 arising

from the rational function optimization method.173 Cartesian Hessians from any source, and

the Hessian guess from Lindh et al.174 may now be used.

There is improved support for constrained optimizations, including the ability to freeze

selected internal and Cartesian coordinates, and to optimize toward a structure with a desired

coordinate value using extra forces. The user can also turn on a “dynamic-level” algorithm

that incrementally tries more robust optimization methods for difficult systems when poor

steps occur. This approach was critical in obtaining optimized geometries in a study of

highly-strained alkoxy-substituted 1,8-bis((propyloxyphenyl) ethynyl) naphthalenes.175

6.9 X2C Relativistic Corrections

One-component scalar theories offer an economical and convenient way to include approxi-

mate relativistic effects in electronic structure computations both at the self-consistent-field

level (Hartree–Fock, DFT) and in electron correlation methods. Psi4 implements the spin-

free one-electron version of the exact-two-component approach,176–185 abbreviated as X2C.

An X2C computation starts with the diagonalization of the one-electron Dirac Hamiltonian

using a kinetically balanced basis set. Next, a Foldy–Wouthuysen transformation186 is per-

formed, which yields an effective one-electron Hamiltonian matrix (hX2C), which is the sum

of one-electron modified kinetic and potential energy matrices.

The choice of basis for X2C computations requires some considerations. In general,

contracted basis sets do not offer a balanced description of the large and small components

of the wave function, so it is generally recommended to evaluate the X2C Hamiltonian via

a decontraction/recontraction procedure. The default procedure used in Psi4 consists in

solving the Dirac Hamiltonian in a decontracted atomic orbital basis followed by projection
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of the solutions onto the contracted basis. Alternatively, the user may perform a computation

in a fully decontracted basis.

One of the major advantages of spin-free scalar relativistic approaches like X2C is that

they can be easily interfaced with non-relativistic electronic structure methods by replacing

the one-electron Hamiltonian matrix with the quantity hX2C. All other quantities that enter

these theories (two-electron integrals, exchange-correlation functionals, etc.) are evaluated

using standard non-relativistic equations. The cost of X2C computation has a scaling propor-

tional to the cube of the number of basis functions (the number of primitive basis functions,

in the case of decontraction/recontraction procedure) and is generally negligible. An exam-

ple application of the X2C capabilities of Psi4 is a recently developed X2C/orthogonality-

constrained DFT187 approach to predict near edge X-ray absorption spectra.188 The use

of scalar relativistic Hamiltonians was found to be essential, since already for second-row

elements the correction to nonrelativistic excitation energies is as large as 8 eV.

7 Community and Outreach

Finally, the Psi4 team and our collaborators have fostered the growth of a user community.

We have spent significant effort in writing and maintaining a clear user manual,189 which

presents not only the features and input file syntax, but also discussions on simplifying and

automating more complex computations. The manual is formatted using Sphinx,190 which

facilitates heavy use of cross-referencing for user convenience. To ensure that documentation

on API and user options is kept up-to-date, we automatically generate this information

directly from the source code. New users can consult a number of tutorial videos posted on

YouTube191 and post questions at our user forum.192 News about Psi4, and downloads, are

posted on our website.193

Not only do we wish to help experienced users learn about how to use Psi4, but we

also want to leverage Psi4 to teach undergraduates and graduate students about compu-
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tational chemistry. We have formed the Psi4Education group to develop and distribute a

set of computational chemistry laboratory exercises using freely available software, including

Psi4. Our webpage provides the labs developed to date,194 and a book chapter describes

the project as a whole.195 We use the popular WebMO graphical front-end,19 which is inter-

faced to Psi4. A Psi4Education workshop was held at the Biennial Conference on Chemical

Education demonstrating these lab exercises in 2014. In 2016, a joint workshop on quantum

chemistry and molecular mechanics simulations at the Florida American Chemical Society

meeting introduced attendees to Psi4 integrated with plotting capabilities in Jupyter note-

books. We plan to continue developing additional lab exercises as part of this effort. In

addition, as mentioned above in Section 2.3, advanced exercises in electronic structure the-

ory for upper-level undergraduates and beginning graduate students, developed using our

user-friendly Python front-end and the NumPy linear algebra library, are available through

the Psi4NumPy project.60

8 Conclusions

The hybrid C++/Python programming model seems successful in our experience so far.

C++ allows fast, efficient code for lower-level, computationally intensive tasks. For the

driver and other higher-level portions of the code, Python seems to offer a lower barrier to

entry for new programmers, and it can facilitate rapid prototyping thanks to the interface

with NumPy. Moreover, the large number of active scientific computing projects in Python

is likely to aid interoperability of Psi4 with other projects, which is one of our major goals.

To that end, the 1.1 release uses a new build and distribution system to make it easy to

connect Psi4 with independently-developed, reusable software components. Finally, we have

developed a new set of libraries providing efficient generation of generalized Coulomb and

exchange matrices, density-fitted electron repulsion integrals, and related quantities. These

libraries have greatly simplified and sped up our development of numerous new features over
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the past few years.
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CheMPS2 
C++/PYTHON LIBRARY 

GPL-2.0+

libefp 
C LIBRARY 

BSD-2-Clause

erd 
FORTRAN LIBRARY 

GPL-2.0+

DFTD3 
FORTRAN EXECUTABLE 

GPL-1.0+

PCMSolver 
C++/FORTRAN LIBRARY 

LGPL-3.0+

ambit 
C++/PYTHON LIBRARY 

LGPL-3.0

dkh 
FORTRAN LIBRARY 

LGPL-3.0

MRCC 
FORTRAN EXECUTABLE 

Custom

v2rdm_casscf 
C++/FORTRAN PLUGIN 

GPL-2.0+

Libint 
C LIBRARY 
LGPL-3.0+

simint 
C LIBRARY 

BSD-3-Clause

NumPy 
PYTHON LIBRARY 

BSD-3-Clause

Python 
INTERPRETER 

Python-2.0

pybind11 
C++ HEADER LIBRARY 

BSD-3-Clause-LBNL

BLAS·LAPACK 
FORTRAN LIBRARY 

BSD-3-Clause

HDF5 
C++ LIBRARY 

BSD-style

PSI4 
C++/PYTHON LIBRARY 

LGPL-3.0

CMake 
C++ EXECUTABLE 

BSD-3-Clause

gdma 
FORTRAN LIBRARY 

GPL-2.0+

Build-Time Selected
Run-Time Selected

Optional Dependency
Required Dependency

Forte 
C++ PLUGIN 

GPL-3.0+

gCP 
FORTRAN EXECUTABLE 

GPL-1.0+
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