45,024 research outputs found

    Hubble Space telescope thermal cycle test report for large solar array samples with BSFR cells (Sample numbers 703 and 704)

    Get PDF
    The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module

    Significant events in low-level flow conditions hazardous to aircraft

    Get PDF
    Atmospheric parameters recorded during high surface winds are analyzed to determine magnitude, frequency, duration, and simultaneity of occurrence of low level flow conditions known to be hazardous to the ascent and descent of conventional aircraft and the space shuttle. Graphic and tabular presentations of mean and extreme values and simultaneous occurrences of turbulence (gustiness and a gust factor), wind shear (speed and direction), and vertical motion (updrafts and downdrafts), along with associated temperature inversions are included as function of tower height, layer and/or distance for six 5 sec intervals (one interval every 100 sec) of parameters sampled simultaneously at the rate of 10 speeds, directions and temperatures per second during an approximately 10 min period

    Wind speed and direction shears with associated vertical motion during strong surface winds

    Get PDF
    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds

    Understanding the assembly of Kepler's compact planetary systems

    Full text link
    The Kepler mission has recently discovered a number of exoplanetary systems, such as Kepler-11 and Kepler-32, in which ensembles of several planets are found in very closely packed orbits (often within a few percent of an AU of one another). These compact configurations present a challenge for traditional planet formation and migration scenarios. We present a dynamical study of the assembly of these systems, using an N-body method which incorporates a parametrized model of planet migration in a turbulent protoplanetary disc. We explore a wide parameter space, and find that under suitable conditions it is possible to form compact, close-packed planetary systems via traditional disc-driven migration. We find that simultaneous migration of multiple planets is a viable mechanism for the assembly of tightly-packed planetary systems, as long as the disc provides significant eccentricity damping and the level of turbulence in the disc is modest. We discuss the implications of our preferred parameters for the protoplanetary discs in which these systems formed, and comment on the occurrence and significance of mean-motion resonances in our simulations.Comment: 12 pages, 4 figures, 2 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 1: Ejecta production and orbital dynamics in cislunar space

    Get PDF
    Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity

    Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 2: Ejecta dynamics and enhanced lifetimes in the Earth's magnetosphere

    Get PDF
    Extensive studies were conducted concerning the indivdual mass, temporal and positional distribution of micron and submicron lunar ejecta existing in the Earth-Moon gravitational sphere of influence. Initial results show a direct correlation between the position of the Moon, relative to the Earth, and the percentage of lunar ejecta leaving the Moon and intercepting the magnetosphere of the Earth at the magnetopause surface. It is seen that the Lorentz Force dominates all other forces, thus suggesting that submicron dust particles might possibly be magnetically trapped in the well known radiation zones
    corecore