62 research outputs found

    Broadband dielectric microwave microscopy on μ\mum length scales

    Full text link
    We demonstrate that a near-field microwave microscope based on a transmission line resonator allows imaging in a substantially wide range of frequencies, so that the microscope properties approach those of a spatially-resolved impedance analyzer. In the case of an electric probe, the broadband imaging can be used in a direct fashion to separate contributions from capacitive and resistive properties of a sample at length scales on the order of one micron. Using a microwave near-field microscope based on a transmission line resonator we imaged the local dielectric properties of a Focused Ion Beam (FIB) milled structure on a high-dielectric-constant Ba_{0.6}Sr_{0.4}TiO_3 (BSTO) thin film in the frequency range from 1.3 GHz to 17.4 GHz. The electrostatic approximation breaks down already at frequencies above ~10 GHz for the probe geometry used, and a full-wave analysis is necessary to obtain qualitative information from the images.Comment: 19 pages (preprint format), 5 figures; to be published in Review of Scientific Instrument

    Evidence for power-law frequency dependence of intrinsic dielectric response in the CaCu3_{3}Ti4_{4}O12_{12}

    Full text link
    We investigated the dielectric response of CaCu3_3Ti4_4O12_{12} (CCTO) thin films grown epitaxially on LaAlO3_3 (001) substrates by Pulsed Laser Deposition (PLD). The dielectric response of the films was found to be strongly dominated by a power-law in frequency, typical of materials with localized hopping charge carriers, in contrast to the Debye-like response of the bulk material. The film conductivity decreases with annealing in oxygen, and it suggests that oxygen deficit is a cause of the relatively high film conductivity. With increase of the oxygen content, the room temperature frequency response of the CCTO thin films changes from the response indicating the presence of some relatively low conducting capacitive layers to purely power law, and then towards frequency independent response with a relative dielectric constant ϵ102\epsilon'\sim10^2. The film conductance and dielectric response decrease upon decrease of the temperature with dielectric response being dominated by the power law frequency dependence. Below \sim80 K, the dielectric response of the films is frequency independent with ϵ\epsilon' close to 10210^2. The results provide another piece of evidence for an extrinsic, Maxwell-Wagner type, origin of the colossal dielectric response of the bulk CCTO material, connected with electrical inhomogeneity of the bulk material.Comment: v4: RevTeX, two-column, 9 pages, 7 figures; title modified, minor content change in p.7, reference adde

    Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy

    Get PDF
    Monitoring the charged defect concentration at the nanoscale is of critical importance for both the fundamental science and applications of ferroelectrics. However, up-to-date, high-resolution study methods for the investigation of structural defects, such as transmission electron microscopy, X-ray tomography, etc., are expensive and demand complicated sample preparation. With an example of the lanthanum-doped bismuth ferrite ceramics, a novel method is proposed based on the switching spectroscopy piezoresponse force microscopy (SSPFM) that allows probing the electric potential from buried subsurface charged defects in the ferroelectric materials with a nanometer-scale spatial resolution. When compared with the composition-sensitive methods, such as neutron diffraction, X-ray photoelectron spectroscopy, and local time-of-flight secondary ion mass spectrometry, the SSPFM sensitivity to the variation of the electric potential from the charged defects is shown to be equivalent to less than 0.3 at% of the defect concentration. Additionally, the possibility to locally evaluate dynamics of the polarization screening caused by the charged defects is demonstrated, which is of significant interest for further understanding defect-mediated processes in ferroelectrics.publishe
    corecore