75 research outputs found

    On Normal Modes of a Warped Throat

    Full text link
    As shown in arXiv:hep-th/0405282, the warped deformed conifold has two bosonic massless modes, a pseudoscalar and a scalar, that are dual to the phase and the modulus of the baryonic condensates in the cascading gauge theory. We reconsider the scalar mode sector, mixing fluctuations of the NS-NS 2-form and the metric, and include non-zero 4-d momentum kμk_\mu. The resulting pair of coupled equations produce a discrete spectrum of m42=kμ2m_4^2=- k_\mu^2 which is interpreted as the spectrum of JPC=0+J^{PC}= 0^{+-} glueballs in the gauge theory. Similarly, we derive the spectrum of certain pseudoscalar glueballs with JPC=0J^{PC}= 0^{--}, which originate from the decoupled fluctuations of the RR 2-form. We argue that each of the massive scalar or pseudoscalar modes we find belongs to a 4-d massive axial vector or vector supermultiplet. We also discuss our results in the context of a finite length throat embedded into a type IIB flux compactification.Comment: LaTeX, 29 pages, 4 eps figure

    Dialing in single-site reactivity of a supported calixarene-protected tetrairidium cluster catalyst.

    Get PDF
    A closed Ir4 carbonyl cluster, 1, comprising a tetrahedral metal frame and three sterically bulky tert-butyl-calix[4]arene(OPr)3(OCH2PPh2) (Ph = phenyl; Pr = propyl) ligands at the basal plane, was characterized with variable-temperature 13C NMR spectroscopy, which show the absence of scrambling of the CO ligands at temperatures up to 313 K. This demonstration of distinct sites for the CO ligands was found to extend to the reactivity and catalytic properties, as shown by selective decarbonylation in a reaction with trimethylamine N-oxide (TMAO) as an oxidant, which, reacting in the presence of ethylene, leads to the selective bonding of an ethyl ligand at the apical Ir site. These clusters were supported intact on porous silica and found to catalyze ethylene hydrogenation, and a comparison of the kinetics of the single-hydrogenation reaction and steady-state hydrogenation catalysis demonstrates a unique single-site catalyst-with each site having the same catalytic activity. Reaction orders in the catalytic ethylene hydrogenation reaction of approximately 1/2 and 0 for H2 and C2H4, respectively, nearly match those for conventional noble-metal catalysts. In contrast to oxidative decarbonylation, thermal desorption of CO from silica-supported cluster 1 occurred exclusively at the basal plane, giving rise to sites that do not react with ethylene and are catalytically inactive for ethylene hydrogenation. The evidence of distinctive sites on the cluster catalyst leads to a model that links to hydrogen-transfer catalysis on metals-involving some surface sites that bond to both hydrocarbon and hydrogen and are catalytically engaged (so-called "*" sites) and others, at the basal plane, which bond hydrogen and CO but not hydrocarbon and are reservoir sites (so-called "S" sites)

    Factors for increasing strength of composite materials based on fine high-calcium fly ash

    Get PDF
    Industrial high-calcium fly ashes obtained by burning Kansk-Achinsk coal at a thermal power plant and selected from different fields of electrostatic precipitators of an ash collecting plant were studied as the basis for composite binders (CB). The main factors influencing the properties of such CBs are the particle size, the concentration of superplasticizer at a water:binder (w/b) ratio of 0.25, and the proportion of HCFA in the mixture with cement. In particular, for cementless CBs at w/b 0.4, it was found that a change in the particle size d90 from 30 μm to 10 μm leads to an increase in compressive strength by more than 2 times – from 5.5–14 MPa to 11–36 MPa, accordingly, with a curing age of 3–300 days. The 0.12% additive of Melflux 5581F superplasticizer at w/b 0.25 increases the compressive strength – up to 14–32 MPa and up to 24–78 MPa, accordingly. The HCFA-cement blends were investigated in the range of 60–90% HCFA and the maximum compressive strength 77 MPa at 28 days of hardening was found at 80% HCFA. On the basis of 80% HCFA blend with the 0.3% addition of Melflux 5581F and 5% silica fume, the specimens of ultra-high strength (108 MPa at 28 days of hardening) were obtained

    On quantization of singular varieties and applications to D-branes

    Get PDF
    We calculate the ring of differential operators on some singular affine varieties (intersecting stacks, a point on a singular curve or an orbifold). Our results support the proposed connection of the ring of differential operators with geometry of D-branes in (bosonic) string theory. In particular, the answer does know about the resolution of singularities in accordance with the string theory predictions.Comment: LaTeX2e, 17 pages, misprints correcte

    Centroid based clustering of high throughput sequencing reads based on n-mer counts

    Get PDF
    Background: Many problems in computational biology require alignment-free sequence comparisons. One of the common tasks involving sequence comparison is sequence clustering. Here we apply methods of alignment-free comparison (in particular, comparison using sequence composition) to the challenge of sequence clustering. Results: We study several centroid based algorithms for clustering sequences based on word counts. Study of their performance shows that using k-means algorithm with or without the data whitening is efficient from the computational point of view. A higher clustering accuracy can be achieved using the soft expectation maximization method, whereby each sequence is attributed to each cluster with a specific probability. We implement an open source tool for alignment-free clustering. It is publicly available from github: https://github.com/luscinius/afcluster. Conclusions: We show the utility of alignment-free sequence clustering for high throughput sequencing analysis despite its limitations. In particular, it allows one to perform assembly with reduced resources and a minimal loss of quality. The major factor affecting performance of alignment-free read clustering is the length of the read

    Cluster analysis of the origins of the new influenza A(H1N1) virus

    Get PDF
    In March and April 2009, a new strain of influenza A(H1N1) virus has been isolated in Mexico and the United States. Since the initial reports more than 10,000 cases have been reported to the World Health Organization, all around the world. Several hundred isolates have already been sequenced and deposited in public databases. We have studied the genetics of the new strain and identified its closest relatives through a cluster analysis approach. We show that the new virus combines genetic information related to different swine influenza viruses. Segments PB2, PB1, PA, HA, NP and NS are related to swine H1N2 and H3N2 influenza viruses isolated in North America. Segments NA and M are related to swine influenza viruses isolated in Eurasia

    Bethe Ansatz Equations for General Orbifolds of N=4 SYM

    Full text link
    We consider the Bethe Ansatz Equations for orbifolds of N =4 SYM w.r.t. an arbitrary discrete group. Techniques used for the Abelian orbifolds can be extended to the generic non-Abelian case with minor modifications. We show how to make a transition between the different notations in the quiver gauge theory.Comment: LaTeX, 66 pages, 9 eps figures, minor corrections, references adde

    Stabilizing Single Sites on Solid Supports: Robust Grafted Ti(IV)-Calixarene Olefin Epoxidation Catalysts via Surface Polymerization and Cross-Linking

    Get PDF
    This manuscript develops a surface polymerization and cross-linking approach for the stabilization of single-site catalysts on solid surfaces, which is demonstrated here for grafted Ti(IV)-calixarene Lewis acids on silica. Our approach relies on cationic polymerization that is initiated by an adsorbed B(C_6F_5)_3 and uses styrene as the monomer and diisopropenylbenzene as the cross-linking agent. The mildness of this polymerization method is demonstrated by its lack of blocking micropores and only slight consumption of mesopore internal surface area on the basis of N2 physisorption data at 77 K, both of which are in contrast to previously reported surface-polymerization approaches. Catalysis of samples before and after polymerization and cross-linking was investigated with a probe reaction consisting of the epoxidation of 1-octene with tert-butyl hydroperoxide as oxidant, which is known to be catalyzed by Lewis-acid sites, and a comparison of catalyst hydrolytic stability was performed. Added water in the latter was used as a a trigger to induce site aggregation, as a stress test to determine the effectiveness of site protection by our polymerization approach. Consistent with the N2 physisorption data, catalysis data demonstrate that surface polymerization does not block small-molecule reactant and product access to Lewis-acid sites on the surface, since the conversion remains essentially unchanged before and after surface polymerization and cross-linking. DR UV–vis, TGA, and catalysis data reveal that the grafted Ti(IV)-calixarene sites on silica maintain their catalytic activity even after being treated with corrosive protic stress-test solution. In sharp contrast, grafted sites without the polymer layer leach nearly all of their calixarene and Ti contents during similar stress testing, resulting in the near complete loss of catalytic activity. We hypothesize that the surface polymer acts as a nanoreactor gatekeeper, which prevents the large Ti(IV)-calixarene site from leaching and keeps surface complexes as single sites grafted on the silica surface, by blocking access for the migration of sites from the surface to bulk solution

    Stabilizing Single Sites on Solid Supports: Robust Grafted Ti(IV)-Calixarene Olefin Epoxidation Catalysts via Surface Polymerization and Cross-Linking

    Get PDF
    This manuscript develops a surface polymerization and cross-linking approach for the stabilization of single-site catalysts on solid surfaces, which is demonstrated here for grafted Ti(IV)-calixarene Lewis acids on silica. Our approach relies on cationic polymerization that is initiated by an adsorbed B(C_6F_5)_3 and uses styrene as the monomer and diisopropenylbenzene as the cross-linking agent. The mildness of this polymerization method is demonstrated by its lack of blocking micropores and only slight consumption of mesopore internal surface area on the basis of N2 physisorption data at 77 K, both of which are in contrast to previously reported surface-polymerization approaches. Catalysis of samples before and after polymerization and cross-linking was investigated with a probe reaction consisting of the epoxidation of 1-octene with tert-butyl hydroperoxide as oxidant, which is known to be catalyzed by Lewis-acid sites, and a comparison of catalyst hydrolytic stability was performed. Added water in the latter was used as a a trigger to induce site aggregation, as a stress test to determine the effectiveness of site protection by our polymerization approach. Consistent with the N2 physisorption data, catalysis data demonstrate that surface polymerization does not block small-molecule reactant and product access to Lewis-acid sites on the surface, since the conversion remains essentially unchanged before and after surface polymerization and cross-linking. DR UV–vis, TGA, and catalysis data reveal that the grafted Ti(IV)-calixarene sites on silica maintain their catalytic activity even after being treated with corrosive protic stress-test solution. In sharp contrast, grafted sites without the polymer layer leach nearly all of their calixarene and Ti contents during similar stress testing, resulting in the near complete loss of catalytic activity. We hypothesize that the surface polymer acts as a nanoreactor gatekeeper, which prevents the large Ti(IV)-calixarene site from leaching and keeps surface complexes as single sites grafted on the silica surface, by blocking access for the migration of sites from the surface to bulk solution
    corecore