8,371 research outputs found

    Random walks with thermalizing collisions in bounded regions; physical applications valid from the ballistic to diffusive regimes

    Get PDF
    The behavior of a spin undergoing Larmor precession in the presence of fluctuating fields is of interest to workers in many fields. The fluctuating fields cause frequency shifts and relaxation which are related to their power spectrum, which can be determined by taking the Fourier transform of the auto-correlation functions of the field fluctuations. Recently we have shown how to calculate these correlation functions for all values of mean free path (ballistic to diffusive motion) in finite bounded regions, using the model of persistent continuous time random walks (CTRW) for particles subject to scattering by fixed (frozen) scattering centers so that the speed of the moving particles is not changed by the collisions. In this work we show how scattering with energy exchange from an ensemble of scatterers in thermal equilibrium can be incorporated into the CTRW. We present results for 1,2 and 3 dimensions. The results agree for all these cases contrary to the previously studied 'frozen' models. Our results for the velocity autocorrelation function show a long time tail (∼t−1/2)\left( \sim t^{-1/2}\right) , which we also obtain from conventional diffusion theory, with the same power, independent of dimensionality. Our results are valid for any Markovian scattering kernel as well as any kernel based on a scattering cross section ∼1/v.\sim1/v.Comment: 43 pages, 12 figure

    Size-independence of statistics for boundary collisions of random walks and its implications for spin-polarized gases

    Full text link
    A bounded random walk exhibits strong correlations between collisions with a boundary. For an one-dimensional walk, we obtain the full statistical distribution of the number of such collisions in a time t. In the large t limit, the fluctuations in the number of collisions are found to be size-independent (independent of the distance between boundaries). This occurs for any inter-boundary distance, including less and greater than the mean-free-path, and means that this boundary effect does not decay with increasing system-size. As an application, we consider spin-polarized gases, such as 3-Helium, in the three-dimensional diffusive regime. The above results mean that the depolarizing effect of rare magnetic-impurities in the container walls is orders of magnitude larger than a Smoluchowski assumption (to neglect correlations) would imply. This could explain why depolarization is so sensitive to the container's treatment with magnetic fields prior to its use.Comment: 5 page manuscript with extra details in appendices (additional 3 pages

    Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways

    Get PDF
    Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A–C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking

    The Sun is less active than other solar-like stars

    Full text link
    Magnetic activity of the Sun and other stars causes their brightness to vary. We investigate how typical the Sun's variability is compared to other solar-like stars, i.e. those with near-solar effective temperatures and rotation periods. By combining four years of photometric observations from the Kepler space telescope with astrometric data from the Gaia spacecraft, we measure photometric variabilities of 369 solar-like stars. Most of the solar-like stars with well-determined rotation periods show higher variability than the Sun and are therefore considerably more active. These stars appear nearly identical to the Sun, except for their higher variability. Their existence raises the question of whether the Sun can also experience epochs of such high variability.Comment: Accepted for publication in Science. 3 (main) + 10 (supplementary) figure

    Geometric potential and transport in photonic topological crystals

    Full text link
    We report on the experimental realization of an optical analogue of a quantum geometric potential for light wave packets constrained on thin dielectric guiding layers fabricated in silica by the femtosecond laser writing technology. We further demonstrate the optical version of a topological crystal, with the observation of Bloch oscillations and Zener tunneling of purely geometric nature
    • …
    corecore