1,173 research outputs found
Quantum tunneling of superconducting string currents
We investigate the decay of current on a superconducting cosmic string
through quantum tunneling. We construct the instanton describing tunneling in a
simple bosonic string model, and estimate the decay rate. The tunneling rate
vanishes in the limit of a chiral current. This conclusion, which is supported
by a symmetry argument, is expected to apply in general. It has important
implications for the stability of chiral vortons.Comment: 16 pages, 2 figure
Geometry of fully coordinated, two-dimensional percolation
We study the geometry of the critical clusters in fully coordinated
percolation on the square lattice. By Monte Carlo simulations (static
exponents) and normal mode analysis (dynamic exponents), we find that this
problem is in the same universality class with ordinary percolation statically
but not so dynamically. We show that there are large differences in the number
and distribution of the interior sites between the two problems which may
account for the different dynamic nature.Comment: ReVTeX, 5 pages, 6 figure
Tensile and charpy impact properties of irradiated reduced-activation ferritic steels
Tensile tests were conducted on 8 reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on steels irradiated to 26-29 dpa. Irradiation was in Fast Flux Test Facility at 365 C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15- 17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20,000 h at 365 C. Thermal aging had little effect on tensile properties or ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in upper-shelf energy (USE). After 7 dpa, strength increased (hardened) and then remained relatively unchanged through 26-29 dpa (ie, strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness (increased DBTT, decreased USE) remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels had the most irradiation resistance
Recommended from our members
Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels
Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement will be reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture. In addition to irradiation hardening, neutrons from the fusion reaction will produce large amounts of helium in the steels used to construct fusion power plant components. Tests to simulate the fusion environment indicate that helium can also affect the toughness. Steels are being developed for fusion applications that have a low DBTT prior to irradiation and then show only a small shift after irradiation. A martensitic 9Cr-2WVTa (nominally Fe-9Cr-2W-0.25V-0.07Ta-0.1C) steel had a much lower DBTT than the conventional 9Cr-1MoVNb steel prior to neutron irradiation and showed a much smaller increase in DBTT after irradiation. 27 refs., 5 figs., 1 tab
Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels
Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement will be reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture. In addition to irradiation hardening, neutrons from the fusion reaction will produce large amounts of helium in the steels used to construct fusion power plant components. Tests to simulate the fusion environment indicate that helium can also affect the toughness. Steels are being developed for fusion applications that have a low DBTT prior to irradiation and then show only a small shift after irradiation. A martensitic 9Cr-2WVTa (nominally Fe-9Cr-2W-0.25V-0.07Ta-0.1C) steel had a much lower DBTT than the conventional 9Cr-1MoVNb steel prior to neutron irradiation and showed a much smaller increase in DBTT after irradiation. 27 refs., 5 figs., 1 tab
Spontaneous Resonances and the Coherent States of the Queuing Networks
We present an example of a highly connected closed network of servers, where
the time correlations do not go to zero in the infinite volume limit. This
phenomenon is similar to the continuous symmetry breaking at low temperatures
in statistical mechanics. The role of the inverse temperature is played by the
average load.Comment: 3 figures added, small correction
Layering in the Ising model
We consider the three-dimensional Ising model in a half-space with a boundary
field (no bulk field). We compute the low-temperature expansion of layering
transition lines
The chemosensitizer cyclosporin A enhances the toxic side-effects of doxorubicin in the rat
the feasibility of using chemosensitizers in the circumvention of P-glycoprotein-mediated multidrug resistance has been shown in many studies. We recently reported on the chemosensitizing effect of cyclosporin A (CsA) on doxorubicin in a rat solid tumour model. Using the same experimental design we investigated the side-effects of the combination treatment. During the 35-day experiment doxorubicin treatment caused dose-dependent weight loss, which was enhanced by combination treatment with CsA. The main doxorubicin-related side-effects were myelosuppression (transient leucopenia and thrombopenia) and nephrotoxicity. Damage to the kidney was severe, leading to a nephrotic syndrome and resulting in ascites, pleural effusion, hypercholesterolaemia and hypertriglyceridaemia. These toxicities were enhanced by the addition of the chemosensitizer CsA. Mild doxorubicin-related cardiomyopathy and minimal hepatotoxicity were seen on histological examination. There were no signs of enhanced toxicity of the combination treatment in tissues with known high expression levels of P-glycoprotein, like the liver, adrenal gland and large intestine. CsA had a low toxicity profile, as it only caused a transient rise in bilirubin. In conclusion, the chemosensitizer CsA enhanced the side-effects of the anticancer drug doxorubiein without altering the toxicity pattern. There was no evidence of a therapeutic gain by adding CsA to doxorubicin, compared to single-agent treatment with doxorubicin in 25%-33% higher doses, because of the enhanced toxicity of the combination treatment
Spectral stability of noncharacteristic isentropic Navier-Stokes boundary layers
Building on work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the
shock wave case, we study stability of compressive, or "shock-like", boundary
layers of the isentropic compressible Navier-Stokes equations with gamma-law
pressure by a combination of asymptotic ODE estimates and numerical Evans
function computations. Our results indicate stability for gamma in the interval
[1, 3] for all compressive boundary-layers, independent of amplitude, save for
inflow layers in the characteristic limit (not treated). Expansive inflow
boundary-layers have been shown to be stable for all amplitudes by Matsumura
and Nishihara using energy estimates. Besides the parameter of amplitude
appearing in the shock case, the boundary-layer case features an additional
parameter measuring displacement of the background profile, which greatly
complicates the resulting case structure. Moreover, inflow boundary layers turn
out to have quite delicate stability in both large-displacement and
large-amplitude limits, necessitating the additional use of a mod-two stability
index studied earlier by Serre and Zumbrun in order to decide stability
On scattering of solitons for the Klein-Gordon equation coupled to a particle
We establish the long time soliton asymptotics for the translation invariant
nonlinear system consisting of the Klein-Gordon equation coupled to a charged
relativistic particle. The coupled system has a six dimensional invariant
manifold of the soliton solutions. We show that in the large time approximation
any finite energy solution, with the initial state close to the solitary
manifold, is a sum of a soliton and a dispersive wave which is a solution of
the free Klein-Gordon equation. It is assumed that the charge density satisfies
the Wiener condition which is a version of the ``Fermi Golden Rule''. The proof
is based on an extension of the general strategy introduced by Soffer and
Weinstein, Buslaev and Perelman, and others: symplectic projection in Hilbert
space onto the solitary manifold, modulation equations for the parameters of
the projection, and decay of the transversal component.Comment: 47 pages, 2 figure
- …