46 research outputs found

    Induction of Empathy by the Smell of Anxiety

    Get PDF
    The communication of stress/anxiety between conspecifics through chemosensory signals has been documented in many vertebrates and invertebrates. Here, we investigate how chemosensory anxiety signals conveyed by the sweat of humans (N = 49) awaiting an academic examination are processed by the human brain, as compared to chemosensory control signals obtained from the same sweat donors in a sport condition. The chemosensory stimuli were pooled according to the donation condition and administered to 28 participants (14 males) synchronously to breathing via an olfactometer. The stimuli were perceived with a low intensity and accordingly only about half of the odor presentations were detected by the participants. The fMRI results (event-related design) show that chemosensory anxiety signals activate brain areas involved in the processing of social emotional stimuli (fusiform gyrus), and in the regulation of empathic feelings (insula, precuneus, cingulate cortex). In addition, neuronal activity within attentional (thalamus, dorsomedial prefrontal cortex) and emotional (cerebellum, vermis) control systems were observed. The chemosensory perception of human anxiety seems to automatically recruit empathy-related resources. Even though the participants could not attentively differentiate the chemosensory stimuli, emotional contagion seems to be effectively mediated by the olfactory system

    Does Sleep Help Prevent Forgetting Rewarded Memory Representations in Children and Adults?

    Get PDF
    Sleep fosters the consolidation of rewarded memory representations in adults. However, sleep and its memory-supporting functions change through healthy development, and it is unclear whether sleep benefits the consolidation of rewarded memory representations in children as it does in adults. Based on previous findings, we expected sleep to benefit the consolidation of rewarded memory representations in children more than it does in adults. For that reason, 16 children (7–11 years) and 20 adults (21–29 years) participated in this experiment. During the encoding session, participants were asked to learn the location of 18 object pairs. Thereafter, one-half of the object locations were allocated to a high-rewarded condition and the other half to a low-rewarded condition. In the sleep condition, the encoding session took place in the evening (for children 7–8 pm, for adults 8–9 pm). After a fixed retention interval of 12 h the retrieval session was conducted the next morning (for children 7–8 am, for adults 8–9 am). In the wake condition, the time schedule was the same but reversed: the encoding session started in the morning (for children 7–8 am, for adults 8–9 am), and retrieval took place in the evening (for children 7–8 pm, for adults 8–9 pm). Sleep/wake had no impact on the memory performance regarding the low-rewarded memory items. In contrast, wakefulness in comparison to sleep reduced the memory performance on high-rewarded memory items. The interaction between sleep/wake and the degree of reward on memory performance was only significant in children. These results show that 12 h of wakefulness can deteriorate the memory performance for high-rewarded representations, whereas sleep can prevent the forgetting of these rewarded representations. It is discussed whether ontogenetic changes in sleep may play a role in conserving relevant but fragile memory representation

    Unmet Needs in Children With Attention Deficit Hyperactivity Disorder—Can Transcranial Direct Current Stimulation Fill the Gap? Promises and Ethical Challenges

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is a disorder most frequently diagnosed in children and adolescents. Although ADHD can be effectively treated with psychostimulants, a significant proportion of patients discontinue treatment because of adverse events or insufficient improvement of symptoms. In addition, cognitive abilities that are frequently impaired in ADHD are not directly targeted by medication. Therefore, additional treatment options, especially to improve cognitive abilities, are needed. Because of its relatively easy application, well-established safety, and low cost, transcranial direct current stimulation (tDCS) is a promising additional treatment option. Further research is needed to establish efficacy and to integrate this treatment into the clinical routine. In particular, limited evidence regarding the use of tDCS in children, lack of clear translational guidelines, and general challenges in conducting research with vulnerable populations pose a number of practical and ethical challenges to tDCS intervention studies. In this paper, we identify and discuss ethical issues related to research on tDCS and its potential therapeutic use for ADHD in children and adolescents. Relevant ethical issues in the tDCS research for pediatric ADHD center on safety, risk/benefit ratio, information and consent, labeling problems, and nonmedical use. Following an analysis of these issues, we developed a list of recommendations that can guide clinicians and researchers in conducting ethically sound research on tDCS in pediatric ADHD

    An app-based training for adolescents with problematic digital-media use and their parents (Res@t digital): protocol for a cluster-randomized clinical trial

    Get PDF
    BackgroundDigital media-use disorders (DMUD) in adolescents are a rising phenomenon associated with psychological distress, comorbid mental disorders, and high burden on affected families. Since the ICD-11 introduced criteria for gaming disorder, these can now be transferred to describe additional DMUD associated with social media platforms and streaming services. Most evidence for effective treatments comes from cognitive-behavioral therapy (CBT). However, interventions based on theoretical models for adolescents and their parents are widely missing, leading to a significant clinical gap.MethodsRes@t digital (Resource-Strengthening Training for Adolescents with Problematic Digital-Media Use and their Parents) is the app-based translation of the first model-based digital intervention for adolescents with DMUD and their parents based on CBT. It comprises separate but content-related modules for adolescents (Res@t–A) and parents (Res@t–P), applying multimodal techniques. The effectiveness of Res@t will be evaluated within a multicenter cluster-randomized controlled evaluator-blinded pre–post follow-up trial with the waitlist control group (CG). In addition to the Res@t program in the intervention group, both groups will receive treatment as usual within primary child and adolescent psychiatric/psychotherapeutic healthcare. The primary outcome addresses DMUD symptom reduction after 10 weeks. Secondary outcomes are related to a reduction in psychological and family-related problems and an increase in parental self-efficacy. All outcomes will be assessed using standardized self-report measures. A total of 1,334 participating adolescent–parent dyads from a large clinical network throughout Germany are planned to be included in the primary analyses based on an intention-to-treat approach, applying linear mixed models.DiscussionAssuming superiority of Res@t over the control condition, the intervention has the potential to provide evidence-based treatment for a significant number of help-seeking families, supporting local healthcare structures and resources. It is a promising program for practicable implementation and flexible use in different settings.Clinical trial registrationhttps://drks.de, DRKS00031043

    Transient Destabilization of Declarative Memory—Opposing Impact of Physical Exercise or Rest after Encoding in Typically Developing Children and Children with Attention Deficit Hyperactivity Disorder but No Difference after Subsequent Sleep

    No full text
    Background: Children are especially sensitive to a broad range of influences and show a remarkable capacity for learning. One prominent example is declarative memory, which may be influenced by a variety of factors and is impaired in attention deficit hyperactivity disorder (ADHD). Exercise and sleep, or both combined, might foster declarative memory. Methods: Here, 12 typically developing children (TDC) and 12 age-matched children with ADHD participated in an exercise and rest condition before a night in the sleep laboratory. Declarative memory was encoded before exercise or rest and retrieved before and after a night of sleep. Results: Exercise in TDC but rest in ADHD lead to a transient destabilization of declarative memory, while there were no more differences after a night of sleep. Rapid eye movement (REM) sleep latency was prolonged after exercise in both groups. Conclusions: Exercise leads to opposing effects on immediate declarative memory formation. The factors or contexts that promote or hinder declarative memory formation in children ADHD and TDC differ, and further work is needed to determine the recommendations for declarative learning in children with ADHD

    Associations between cognitive performance and sigma power during sleep in children with attention-deficit/hyperactivity disorder, healthy children, and healthy adults.

    No full text
    Sigma power during sleep is associated with cognitive abilities in healthy humans. We examined the relationship between sigma power in sleep EEG and intelligence and alertness in schoolchildren with ADHD (n = 17) in comparison to mentally healthy children (n = 16) and adults (n = 23). We observed a positive correlation between sigma power in sleep stage 2 and IQ in healthy adults but a negative correlation in children with ADHD. Furthermore, children with ADHD showed slower reaction times in alertness testing than both control groups. In contrast, only healthy children displayed a positive correlation between sigma power and reaction times. These data suggest that the associations between sigma power and cognitive performance underlie distinct developmental processes. A negative association between IQ and sigma power indicates a disturbed function of sleep in cognitive functions in ADHD, whereas the function of sleep appears to be matured early in case of motor-related alertness performance

    Melatonin Secretion during a Short Nap Fosters Subsequent Feedback Learning

    No full text
    Sleep helps to protect and renew hippocampus-dependent declarative learning. Less is known about forms of learning that mainly engage the dopaminergic reward system. Animal studies showed that exogenous melatonin modulates the responses of the dopaminergic reward system and acts as a neuroprotectant promoting memory. In humans, melatonin is mainly secreted in darkness during evening hours supporting sleep. In this study, we investigate the effects of a short period of daytime sleep (nap) and endogenous melatonin on reward learning. Twenty-seven healthy, adult students took part in an experiment, either taking a 90-min afternoon nap or watching videos (within-subject design). Before and after the sleep vs. wake interval, saliva melatonin levels and reward learning were measured, and in the nap condition, a polysomnogram was obtained. Reward learning was assessed using a two-alternative probabilistic reinforcement-learning task. Sleep itself and subjective arousal or valence had no significant effects on reward learning. However, this study showed for the first time that an afternoon nap can elicit a small but significant melatonin response in about 41% of the participants and that the magnitude of the melatonin response predicts subsequent reward learning. Only in melatonin responders did a short nap improve reward learning. The difference between melatonin-responders and non-responders occurred very early during learning indicating that melatonin might have improved working memory rather than reward learning. Future studies should use paradigms differentiating working memory and reward learning to clarify which aspect of human feedback learning might profit from melatonin

    Sleep Supports Memory of Odors in Adults but Not in Children.

    No full text
    Sleep supports the consolidation of declarative memory in children and adults. However, it is unclear whether sleep improves odor memory in children as well as adults. Thirty healthy children (mean age of 10.6, ranging from 8-12 yrs.) and 30 healthy adults (mean age of 25.4, ranging from 20-30 yrs.) participated in an incidental odor recognition paradigm. While learning of 10 target odorants took place in the evening and retrieval (10 target and 10 distractor odorants) the next morning in the sleep groups (adults: n = 15, children: n = 15), the time schedule was vice versa in the wake groups (n = 15 each). During encoding, adults rated odors as being more familiar. After the retention interval, adult participants of the sleep group recognized odors better than adults in the wake group. While children in the wake group showed memory performance comparable to the adult wake group, the children sleep group performed worse than adult and children wake groups. Correlations between memory performance and familiarity ratings during encoding indicate that pre-experiences might be critical in determining whether sleep improves or worsens memory consolidation

    Sleep promotes consolidation of emotional memory in healthy children but not in children with attention-deficit hyperactivity disorder.

    Get PDF
    Fronto-limbic brain activity during sleep is believed to support the consolidation of emotional memories in healthy adults. Attention deficit-hyperactivity disorder (ADHD) is accompanied by emotional deficits coincidently caused by dysfunctional interplay of fronto-limbic circuits. This study aimed to examine the role of sleep in the consolidation of emotional memory in ADHD in the context of healthy development. 16 children with ADHD, 16 healthy children, and 20 healthy adults participated in this study. Participants completed an emotional picture recognition paradigm in sleep and wake control conditions. Each condition had an immediate (baseline) and delayed (target) retrieval session. The emotional memory bias was baseline-corrected, and groups were compared in terms of sleep-dependent memory consolidation (sleep vs. wake). We observed an increased sleep-dependent emotional memory bias in healthy children compared to children with ADHD and healthy adults. Frontal oscillatory EEG activity (slow oscillations, theta) during sleep correlated negatively with emotional memory performance in children with ADHD. When combining data of healthy children and adults, correlation coefficients were positive and differed from those in children with ADHD. Since children displayed a higher frontal EEG activity than adults these data indicate a decline in sleep-related consolidation of emotional memory in healthy development. In addition, it is suggested that deficits in sleep-related selection between emotional and non-emotional memories in ADHD exacerbate emotional problems during daytime as they are often reported in ADHD

    Characteristics of sleep spindles in school-aged children with attention-deficit/hyperactivity disorder

    No full text
    Objective: Attention deficit/hyperactivity disorder (ADHD) is a complex disorder, characterized by different presentations with distinct cognitive and neurobiological characterizations. Here we aimed to investigate whether sleep spindle activity, which has been associated with brain maturation, may be a potential biomarker able to differentiate ADHD presentations in school-aged children (7–11 years). Method: Spindle characteristics were extracted from overnight polysomnography in 74 children (27 ADHD-Inattentive [IQ = 96.04], 25 ADHD-hyperactive/impulsive [IQ = 98.9], and 22 ADHD-combined [IQ = 96.1]). We obtained data of the frontal (Fz) and parietal (Pz) derivations using a validated spindle detection algorithm. Results: Children with ADHD showed a higher number and density of slow compared to fast spindles which were more frequent in frontal area. No differences were observed among ADHD presentations for any spindle characteristics. Spindle frequency and density increased with age, indicating an age-dependent maturation of different sleep spindles. However, no associations between IQ and spindle characteristics were observed. Conclusions: In children with ADHD the spindle characteristics evolve with age but sleep spindle activity does not seem to be a valid biomarker of ADHD phenotypes or general cognitive ability
    corecore