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Sleep fosters the consolidation of rewarded memory representations in adults. However,
sleep and its memory-supporting functions change through healthy development, and it
is unclear whether sleep benefits the consolidation of rewarded memory representations
in children as it does in adults. Based on previous findings, we expected sleep to benefit
the consolidation of rewarded memory representations in children more than it does in
adults. For that reason, 16 children (7–11 years) and 20 adults (21–29 years) participated
in this experiment. During the encoding session, participants were asked to learn the
location of 18 object pairs. Thereafter, one-half of the object locations were allocated to
a high-rewarded condition and the other half to a low-rewarded condition. In the sleep
condition, the encoding session took place in the evening (for children 7–8 pm, for adults
8–9 pm). After a fixed retention interval of 12 h the retrieval session was conducted the
next morning (for children 7–8 am, for adults 8–9 am). In the wake condition, the time
schedule was the same but reversed: the encoding session started in the morning (for
children 7–8 am, for adults 8–9 am), and retrieval took place in the evening (for children
7–8 pm, for adults 8–9 pm). Sleep/wake had no impact on the memory performance
regarding the low-rewarded memory items. In contrast, wakefulness in comparison
to sleep reduced the memory performance on high-rewarded memory items. The
interaction between sleep/wake and the degree of reward on memory performance
was only significant in children. These results show that 12 h of wakefulness can
deteriorate the memory performance for high-rewarded representations, whereas sleep
can prevent the forgetting of these rewarded representations. It is discussed whether
ontogenetic changes in sleep may play a role in conserving relevant but fragile memory
representation.
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INTRODUCTION

Sleep can support the consolidation of many different memory systems: Adults display better
performance for declarative (e.g., words, pictures, and object locations) and non-declarative
memories (e.g., finger-tapping sequences, mirror-tracing, or perception) after sleep compared to
wake (Rasch and Born, 2013). Moreover, it was shown that sleep fosters the consolidation of
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emotional memory (Hu et al., 2006; Payne et al., 2008; Wiesner
et al., 2015). While declarative memory has been shown to benefit
from slow wave sleep (SWS) (Marshall et al., 2006; Mölle and
Born, 2011; Ngo et al., 2013), procedural and emotionally toned
memories rather benefit from rapid-eye-movement (REM) sleep
(Wagner et al., 2001; Nishida et al., 2008; Kirov, 2013; Sopp et al.,
2017).

In recent years, it has been shown that sleep fosters
the consolidation of reward-associated memory representations
as well. In those studies, adults showed better memory
performance for high-rewarded or future-relevant than low-
rewarded, irrelevant memory items after a daytime nap (Oudiette
et al., 2013; Igloi et al., 2015; Studte et al., 2016) or a night of
sleep (Wilhelm et al., 2011; van Dongen et al., 2012) compared
to wake. For example, van Dongen et al. (2012) asked adult
participants to learn word lists. After learning, participants were
told that only one of the lists was relevant for later recall.
After sleep or wakefulness, however, participants were asked
to retrieve both lists after all. While participants in the sleep
condition showed an improved memory performance for the
relevant words in the wake condition the opposite was true.
In another study, Wilhelm et al. (2011) presented word lists to
adults. While in some participants expected to retrieve the words
at a later point in time, the others did not expect to retrieve
them. Only those participants who were told that word lists had a
future relevance showed sleep-dependent memory consolidation.
These data indicate that subjective relevance moderates sleep-
dependent memory processes.

With respect to sleep changes over the course of childhood
development, infants and children show a longer duration of
sleep (Galland et al., 2012). In the transition to adolescence,
the most prominent changes in sleep are decreases in SWS
and REM sleep. The basis of these changes in macro sleep
architecture is a shift in oscillatory brain activity during sleep:
children compared to adults show an increase in EEG-activity
in delta (0.5–4 Hz) and theta (4–8 Hz) bands (Kurth et al.,
2010; Buchmann et al., 2011; Cirelli and Tononi, 2015). The
sleep architecture of adolescents and adults becomes more
and more comparable after puberty (Colrain and Baker, 2011;
Campbell et al., 2012). Besides the morphology of sleep also
its function in memory consolidation develops over the course
of childhood (Wilhelm et al., 2012). In a couple of studies it
has since been proven that sleep supports the consolidation of
declarative memories in children as well (Wilhelm et al., 2012).
Backhaus et al. (2008) showed that children remembered word-
pair associations better after a night of sleep than after daytime
wakefulness. In the same way, the memory performance on an
object location task was improved in children after a night of
sleep compared to daytime wakefulness (Wilhelm et al., 2008;
Maski et al., 2015). Even daytime naps in very young children
benefit the memory of object locations (Kurdziel et al., 2013) or
the reproduction of observed movements (Konrad et al., 2016).
In addition, the consolidation of emotional memory is supported
by sleep (Prehn-Kristensen et al., 2009). Here, we observed that
children even showed a pronounced sleep-dependent memory
bias for emotional pictures compared to adults (Prehn-Kristensen
et al., 2013).

Throughout their development, children need to acquire great
amounts of knowledge and skills. An early developed reward
system (Galvan et al., 2006; Lukie et al., 2014; Mills et al., 2014)
is mandatory to determine which of the new experiences are
relevant for further, long-term memory consolidation. In a recent
study, we showed that sleep benefits the consolidation of reward-
related behavior in children (Wiesner et al., 2017). Here, children
learned to choose between rewarded and punished stimuli in
a probabilistic learning paradigm. After a retention interval
containing either sleep (night) or wakefulness (daytime), children
were forced to relearn the reward/punishment contingencies.
Data showed that sleep stabilized reward-related behavior in
healthy children. Whether or not children benefit from sleep with
respect to rewarded memory representation, as has been observed
in adults before, has not yet been investigated.

The aim of the present study is to investigate whether
sleep benefits the maintenance of reward-related memory
representations in children more than in adults. Based on
the findings that sleep supports reward-related behavior in
children (Wiesner et al., 2017) and that sleep supports emotional
memories in children more than in adults (Prehn-Kristensen
et al., 2013), we hypothesize that children will show lower
sleep-dependent rates of forgetting of high-rewarded memory
representation than adults.

MATERIALS AND METHODS

Participants
Participants were 16 healthy children (8 females, aged 7–
11 years, M = 9.7, SD = 1.0, SEM = 0.3) and 20 healthy
adults (10 females, aged 21–29 years, M = 25.2, SD = 2.3,
SEM = 0.5) recruited from flyer and advertisements in the
local newspapers. According to self-rating, adults did not suffer
from psychiatric diseases (Symptom Check List, SCL-90-R;
Derogatis, 1992; cut-off: t > 67 on any symptom or global
scales) or sleep problems (Pittsburgh Sleep Quality Index,
PSQI; Buysse et al., 1989; cut-off: 5). Parental ratings revealed
that children had no psychiatric symptoms (Child Behavior
Check List, CBCL, Achenbach, 1991; cut-off: t > 67 on any
syndrome scale, on internalizing/externalizing problem scales,
or on total score) or sleep problems (Sleep Self Report, SSR-
DE; Owens et al., 2000; Schwerdtle et al., 2010; cut-off: 25).
Pubertal state was assessed using the pubertal development
scale (Watzlawik, 2009): 14 children were pre-pubertal; two
girls were just beginning puberty according to their parents.
Groups did not differ with respect to IQ (Table 1). While all
adults were right-handed in the children’s group only 13 of 16
children were right-handed (Edinburgh-Handedness Inventory;
Oldfield, 1971). A chi-square test revealed that handedness was
not distributed equally across groups (X = 4.1, p = 0.043, see
also Table 1). All participants had normal or corrected-to-normal
vision.

Participants were recruited via newspaper advertisements. All
participating adults, children and their parents gave written,
informed consent after the procedures had been fully explained.
Participants were reimbursed for their participation. The study
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TABLE 1 | Participants’ characteristics and control variables.

Children (n = 16) Adults (n = 20) Children vs. adults

M (SEM) M (SEM) p-value

Age 9.7 (0.3) 25.2 (0.5) <0.001

IQ 104 (2.5) 107 (2.1) 0.357

Handedness 13r/3l 20r 0.043

Total sleep time 9.1 (0.14) 7.5 (0.15) <0.001

Tiredness (0–10)

Sleep encoding 3.6 (0.54) 4.0 (0.41) 0.573

Sleep retrieval 4.9 (0.66) 3.8 (0.44) 0.182

Wake encoding 3.8 (0.69) 3.1 (0.33) 0.354

Wake retrieval 3.9 (0.62) 3.4 (0.53) 0.561

M, mean; SEM, standard error of means; r, right-handed; l, left-handed.

was approved by the local ethics committee of the medical faculty
(reference number: D 525/14).

Memory Task
The memory task was a 2-D object location task adopted from
the well-known card game “Concentration” or “Memory.” In
this computer version (created with E-Prime 2.1, Psychological
Software Tools, United States) 18 pairs of cards were arranged
in six columns and six rows depicting colored cartoon-like
pictures. As motifs, we used animals (e.g., a bird, insects,
or a bear) and everyday items (e.g., a jacket, a house, a
bicycle) on a white background. Stimulus arrangements were
presented on a 15.5 inch computer screen (HP ProBook), always
centered in the middle of the screen. The screen was always
located on a table 50 cm away from the participant. The
subtended visual angle of each motif was 4.3◦. The encoding
sessions were divided into two phases, an object location
task and an object reward task (Figure 1). The procedure
of the object location task has been proven to be sensitive
to sleep-dependent memory consolidation in previous studies

(Rasch and Born, 2007; Wilhelm et al., 2008, 2011; Diekelmann
et al., 2011). This task started by presenting all cards face-up,
and the participant was instructed to memorize as many card
locations as possible. Here, no time limit was given, and the
participant decided when she/he was ready for the next step by
pressing a response button. Thereafter, all cards were presented
face-down, and one pair after the other was displayed face-up by
the computer. A trial started by facing-up the first card of a pair
(cue) for 1 s followed by facing-up the second card (target) for
3 s. Then, both cards were faced-down again. After an inter-trial
interval (ITI) of 3 s, the next trial started by facing-up the next
cue. After all 18 pairs were shown face-up once, the procedure
was repeated a second time. Then, an immediate recognition task
was conducted. Here, a cue was shown face-up by the computer,
and participants were asked to choose the target by using the
computer mouse (no time limit). If the choice was correct, a green
checkmark appeared for 0.5 s on the chosen position, and the next
card was turned over by the computer. If the choice was wrong,
then a red X appeared for 0.5 s on the chosen card and the target
card’s correct location was displayed. After an ITI of 3 s, the next
cue was faced-up. This encoding procedure was repeated until
participants made at least 14 correct choices (77%) in one block
of trials. Thereafter, the newly developed object reward task began
by presenting all cards face-up on the screen: on the left side all
high-rewarded motifs (25 points each) were shown, while on the
right side all low-rewarded motifs (five points each) were shown.
Participants were instructed to memorize the value of each motif
(no time limit). In a subsequent memory test, each motif was
presented along with two alternative choices (25- or 5-point
value, no time limit). The participant was then asked to indicate
whether the current motif represented a high- or a low-rewarded
item by pressing the corresponding key. If the answer was correct,
then a green checkmark appeared on the chosen value for 2 s;
the value was then shown again surrounded by a green frame
for another 1.5 s. After an ITI of 3 s (blank screen), the next
card was presented by the computer. If the choice was wrong,
however, then a red X appeared on the chosen value for 2 s, and

FIGURE 1 | Study design. During encoding participants first learned 18 object locations (learning criterion: 77%) without any cues of allocated reward values;
participants then learned to determine which of the object locations were associated with a high and which were associated with a low reward (learning criterion:
100%); at the retrieval session participants were asked to find as many object locations as possible to receive a maximum reward. While encoding was conducted in
the evening and retrieval was performed in the morning after sleep in the sleep condition, the encoding session was done in the morning and retrieval in the evening
without sleep in between in the wake condition.
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the correct value was surrounded by a green frame for 1.5 s; then
(ITI of 3 s, blank screen) the next card was presented by the
computer. This procedure was repeated until participants made
18 correct choices (100%) in one block of trials. In the beginning
of the encoding session, all participants were told that they had
to memorize as many pairs as possible in order to achieve a high
score. Motor performances were done by the dominant hand.

The retrieval session was conducted 12 h after encoding.
Participants were presented with the same object location
configuration as during encoding; one cue card was displayed
face-up and the target card had to be found using the computer
mouse. Feedback was given for each trial. After all 18 cue
cards were presented once, the retrieval session was finished.
There were two equivalent versions with two different sets of
pictures and object locations. The assignment of the motifs to the
high- and low-reward condition was pseudo-randomized, and
the use of picture sets was completely counterbalanced over the
experimental conditions. Pretests showed that all motifs were
suitable for children and adults; therefore no age-dependent
picture sets were created, and all participants worked on the same
motifs.

Procedure
All children and adults participated in two experimental sessions:
a sleep and a wake session (Figure 1). Both conditions (each being
conducted at least 1 week apart) were conducted in the children’s
or adult’s home environment to avoid any inconveniences caused
by a sleep laboratory environment. Prior to the experimental
sessions, all participants were informed about the amount of the
reward for good performance. Participants were instructed that
their achieved points (25 points for high-rewarded items and 5
points for low-rewarded items) would be summed up at the end
of each retrieval session. They also were instructed that a high
point score would increase the possibility of receiving the reward.
In the adult group, participants were informed that only the top
four scorers of all adults would receive an extra bonus of 50€.
Children were told that they would receive a small toy (about 2€
each) for good performance in each of both conditions. Children
chose their individual present from a “treasure chest” containing
10 different toys (actually all children received both chosen toys
independently of their level of performance).

In the sleep condition, the encoding session started between
7 and 8 pm in children and between 8 and 9 pm in adults;
after a fixed interval of 12 h, the retrieval task started between
7 and 8 am for children and 8 and 9 am for adults the next
morning. In the wake condition, the time schedule was the
same but in reverse order; that is, encoding started between 7
and 8 am for children and between 8 and 9 am in adults, and
retrieval took place after exactly 12 h the same day in the evening
between 7 and 8 pm for children and 8 and 9 pm for adults.
The order of sleep-/wake conditions was counterbalanced within
groups. During both retention intervals, participants were asked
to wear an actigraph recording device affixed on their wrists.
Participants were told that these devices were to be worn to record
physical activities during the retention intervals. This was done
to enhance participants’ compliance to follow the instructions
(e.g., not dozing off during the wake condition and going to bed

in accordance to their regular sleep-wake cycle during the sleep
condition). Since only dummy devices were used, however, no
actigraphy data were actually collected.

All participants were asked to rate their current degree of
tiredness (one item, 10 cm visual analog scale ranging from not
at all to extremely sleepy) at the beginning of the encoding and
retrieval sessions.

Statistical Analysis
To control for differences in encoding performance (see also first
paragraph of result section), memory performance was assessed
by the relative difference between the object location performance
during the last trial of the encoding session and the retrieval
session in percent (Wagner et al., 2001; Wilhelm et al., 2011).
Here, negative values indicate a loss of memory over the retention
interval. To account for the nature of spatial memory and to yield
a more continuous measurement for spatial memory, the distance
between the correct position and the position indicated by the
participant can be used (Rudoy et al., 2009; Deuker et al., 2013;
Oudiette et al., 2013). Here, we used a comparable approach:
if the correct location was found, then the participant received
two points; if the participant chose an immediate neighbor of
the correct location, then the participant received one point. All
other cases were defined as “failure,” and no points were given.
The analysis of memory performance was done by a 2×2×2
ANOVA including the within factors SLEEP (sleep vs. wake),
REWARD (high- vs. low-rewarded items) and the between factor
AGE (children vs. adults). Comparisons of single means were
performed by t-tests for dependent samples. According to the
Kolmogorov–Smirnov test, the memory performance in children
and adults was normally distributed (p > 0.149).

RESULTS

Encoding data revealed that adults performed better than
children: adults needed fewer learning trials to reach the learning
criterion [children: M = 4.4, SEM = 0.4; adults: M = 2.3,
SEM = 0.4; t(34) = 3.5, p = 0.001]. In addition, adults remembered
more pair locations correctly at the end of the final learning
trial than did children [children: M = 14.9, SEM = 0.1; adults:
M = 15.5, SEM = 0.2; t(34) = 2.3, p = 0.028]. The analysis of
performance time in minutes revealed that children needed more
total time to encode the object locations [children: M = 15.5,
SEM = 1.8; adults: M = 9.2, SEM = 1.6; t(34) = 2.6, p < 0.001]
as well as to encode the reward contingencies [children: M = 9.5,
SEM = 1.0; adults: M = 2.8, SEM = 0.4; t(34) = 6.6, p < 0.001].

The analysis of memory data revealed a main effect
for SLEEP, indicating that the rate of forgetting after sleep
was lower than after wakefulness in general [F(1,34) = 5.8,
p = 0.022]. Furthermore, the main effect for the factor REWARD
[F(1,34) = 7.2, p = 0.011] suggested that rewarded pairs were
more often forgotten than unrewarded pairs (for descriptive
statistics, see also Table 2). More importantly, however, there
was a significant interaction between SLEEP × REWARD
[F(1,34) = 5.3, p = 0.028]. Post hoc t-tests for dependent samples
showed that rates of forgetting for high-rewarded items was lower
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in the sleep condition than in the wake condition [t(35) = 3.5,
p = 0.001, Figure 2; for descriptive statistics, see Table 2]; in the
wake condition, rewarded items were more poorly remembered
than unrewarded items [t(35) = 2.7, p = 0.011]. In addition, the
interaction SLEEP × REWARD × AGE showed a trend toward
significance [F(1,34) = 3.7, p = 0.062]. A planed decomposition
of this latter interaction according to AGE showed that the
interaction SLEEP × REWARD still reached significance only
in children [F(1,15) = 8.2, p = 0.012]. A t-test for dependent
samples revealed that object locations of high-rewarded pairs
were forgotten more than low-rewarded pairs in the wake
condition [t(15) = 3.9, p = 0.001]. In the same way, high-rewarded
items were forgotten less in the sleep than in the wake condition
[sleep: M = −5.3, SEM = 3.1; wake: M = −17.1, SEM = 2.6;
sleep vs. wake: t(15) = 2.9, p = 0.010; comparison not shown
in Table 2]; no other comparison was significant (p > 0.5). In
adults, all ANOVA effects failed to reach significance (p > 0.05).
In order to control for a possible influence of handedness on
memory performance, we excluded all four left-handed children
from the analyses. However, the interaction SLEEP × REWARD
still remained significant [F(1,12) = 5.5, p = 0.037]. In the same
way, the comparisons of single means, which reached significance
before the exclusion, still remained significant [high vs. low-
rewarded pairs in wake condition: t(12) = 3.4, p = 0.005; wake
condition vs. sleep condition for high-rewarded pairs: t(12) = 2.2,
p = 0.047].

The analysis of tiredness only showed a trend toward a main
effect for SLEEP [F(1,34) = 3.9, p = 0.057], indicating that all
participants rated themselves as being slightly more tired in the
sleep (M = 3.6, SEM = 0.3) than in the wake (M = 4.1, SEM = 0.3)
condition. In addition, the trend toward the main effect for
SESSION [F(1,34) = 3.1, p = 0.086], showed that all participants
were slightly more tired during the retrieval (M = 3.6, SEM = 0.3)
than during the encoding session (M = 4.0, SEM = 0.3). However,
all other ANOVA effects failed to reach significance (p > 0.1).
Particularly, the interaction SLEEP × SESSION × GROUP
was not significant [F(1,34) = 1.5, p = 0.235]. According to
self-ratings, children displayed longer sleep times than adults
[children: M = 9.0 h, SEM = 0.14; adults: M = 7.5, SEM = 0.15;
children vs. adults: t(34) = 7.5, p < 0.001]. For descriptive
statistics, see Table 1.

DISCUSSION

Here, we observed that wakefulness reduced the memory of
relevant information more than sleep did. This was shown by
clearly worse memory performance with respect to the high-
rewarded condition compared to the low-rewarded condition. In
the sleep condition no such remarkable deterioration of memory
performance was observed. In addition to this, we found an
indication that this selective impact of sleep/wake on relevant
memory representations is more pronounced in children than in
adults.

The overall rates of forgetting were lower after a period
of sleep than after a period of wakefulness. This result points
out the beneficial impact of sleep on memory consolidation

(Rasch and Born, 2013). In our study, however, this main effect
of sleep was clearly driven by the memory performance of
high-rewarded items. That is, whereas high-rewarded memory
items were forgotten less after sleep than after wakefulness, there
was no impact of sleep or wakefulness on the memory for
low-rewarded items. At this stage of interpretation one could
conclude that sleep had selectively benefited rewarded memory
presentations. A somewhat unexpected finding, however, might
be the worse overall performance on high-rewarded memory
items in comparison to the low-rewarded items. At first glance,
one could expect an overall memory benefit for high-rewarded
items compared to low-rewarded items (Ito and Lee, 2016;
Miendlarzewska et al., 2016); indeed, the opposite was true. Here,
two aspects need to be taken into account. Since the rates of
forgetting in the sleep condition were rather lower, we suspect
that ceiling effects made it impossible to obtain significantly less
forgetting for high-rewarded memory items compared to the low-
rewarded memory items in the sleep condition. But this can only
explain a lack of superior performance with respect to high-
rewarded memory items in the sleep condition. More interesting,
however, is the finding that wakefulness obviously leads to
selective forgetting of high-rewarded memory items. Comparable
results were obtained in the study by van Dongen et al. (2012).
Using a relatively similar study design, they observed a decrease
in memory performance with respect to high-rewarded items in
the wake compared to the sleep condition, as we did too. In their
study, participants were told to learn two word lists. After the
encoding phase, participants were told that only one of the lists
was relevant for a later recall. After sleep or wakefulness, however,
participants were asked to retrieve both lists. In order to achieve
the promised extra bonus for excellent memory performance,
participants in our study had to allocate the previously learned
object locations (encoded in Round 1) their designated value
(encoded in Round 2) retroactively, as well. Importantly, after
encoding the reward values (Round 2), participants were not
shown the object location matrix again and so they were forced
to reactivate the object location matrix from their memory.
According to the reconsolidation theory, a reactivation can cause
a destabilization of previously learned memory representations
which in turn results in worse memory performance (Robertson,
2012; Schwabe et al., 2014; Bonin and De Koninck, 2015; Nader,
2015). Therefore, this selective impact on sleep/wake on the
high-rewarded memory items indicates retroactive interference,
explaining the memory deterioration of high-rewarded items.
Of course, in the sleep condition participants were also forced
to attribute the high and low values to the object locations
retrospectively. However, in the sleep condition participants were
told to go to bed after the encoding session. Therefore subsequent
sleep might have initiated stabilization processes (Walker et al.,
2003; Diekelmann et al., 2011; Deliens et al., 2013).

The observation that only high but not low-rewarded
memory items were affected by sleep/wake emphasizes that the
experimental manipulation was successful. Again, comparable
results were obtained in the study by van Dongen et al. (2012). In
their study, no differences between the sleep and wake condition
were found with respect to low-rewarded memory items. These
results are also in line with others showing that particularly
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TABLE 2 | Memory performance.

Sleep Wake

High rewarded Low rewarded High vs. low High rewarded Low rewarded High vs. low

M (SEM) M (SEM) p-value M (SEM) M (SEM) p-value

Combined −6.6 (2.2) −5.2 (2.1) 0.604 −15.8 (2.5) −7.7 (2.0) 0.001

Children −5.3 (3.1) −7.1 (2.5) 0.661 −17.1 (2.6) −5.3 (2.3) 0.001

Adults −7.6 (3.2) −3.7 (3.3) 0.239 −14.8 (4.1) −9.7 (3.0) 0.110

Displayed values (forgotten index) refer to the decrease in object location performance from last trial of encoding to the first trial of retrieval in percent after a 12 h retention
interval either containing sleep or solely wakefulness. M, mean; SEM, standard error of means.

FIGURE 2 | Memory performance. Memory performance in terms of forgetting rates; presented values refer to forgotten object location performance in terms of
distance between the correct position and the position indicated by the participant (in %) during the 12 h retention interval either containing sleep or solely
wakefulness. Please note that the forgotten index accounts for the distance between the indicated and the correct location. M, mean; SEM, standard error of
means; ∗∗p = 0.01; ∗∗∗p = 0.001.

future-relevant memories are supported by sleep (Wilhelm et al.,
2011). Therefore, our data suggest that the lack of sleep/wake-
dependent changes in rates of forgetting with respect to the
low-relevant condition cannot be interpreted independently of
the high-relevant condition. In fact, it appears that a missing
impact of sleep on the rates of forgetting of low-rewarded items
is present only in the context of high-rewarded items.

In addition to the interaction between the forgetting of
high- and low-rewarded object locations during wakefulness
and sleep, we found by trend that age had an impact
on memory performance: the corresponding comparisons of
single means only reached significance only in children. These
results point toward a better selective function of sleep in
children than in adults. Sleep changes dramatically from
childhood to adulthood, not only the total amount of sleep
but particularly the slow-wave sleep (SWS) rich in slow-
wave activity (SWA), sleep spindle activity, and REM sleep

rich in theta activity decrease over the course of puberty
(Kurth et al., 2010; Buchmann et al., 2011; Colrain and
Baker, 2011; Scholle et al., 2011; Campbell et al., 2012). SWS
and particularly SWA are known to drive the consolidation
of declarative memory during sleep (Marshall et al., 2006;
Mölle and Born, 2011; Ngo et al., 2013). Sleep spindles
do not only serve the consolidation of declarative but also
procedural memory (Göder et al., 2015; Yordanova et al.,
2017a,b). Moreover, REM sleep and theta activity have been
associated with a benefit from sleep with respect to the
consolidation of emotional as well as procedural memory
(Plihal and Born, 1997; Wagner et al., 2001; Nishida et al.,
2008; Sopp et al., 2017); meanwhile, it is still under debate
whether patterns of REM or non-REM-sleep foster reward-
related memory (Perogamvros and Schwartz, 2012; Wiesner
et al., 2017). However, we have no reliable information about
possible differences in sleep architecture between the children’s
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and adults’ groups. Whether SWS, SWA, sleep spindles, or
even REM sleep preserved the memory for high-rewarded items
and were responsible for lower rates of forgetting for high-
rewarded items after sleep has yet to be shown in further
polysomnographic studies. These data may suggest that sleep
has an age-dependent role in stabilizing reward-related behavior.
While sleep maintains reward-related associations in children,
sleep destabilizes these associations more in adults. From an
ontogenetic perspective it could be assumed that children do
not yet have many different options of actions, and it would be
reasonable during development that sleep stabilizes any reward-
related memory representations without deeper evaluation. Both
children and adolescents are more sensitive to reward due to
a maturational mismatch between an advanced reward-system
and a delayed ability for self-control (Galvan et al., 2006; Fareri
et al., 2008; Lukie et al., 2014; Mills et al., 2014; Urosevic et al.,
2014). In contrast, adults, in fact, have more elaborated options
of action so that an immediate stabilization of newly acquired
reward-related behavior became less reasonable. This, however,
is highly speculative and has yet to be proven. Nevertheless, our
data are in line with others indicating that sleep in children
has an important function in daytime performance and healthy
cognitive development (Dewald et al., 2010; Brand and Kirov,
2011; Astill et al., 2012; Kirov and Brand, 2014).

A limitation of the present study is the relatively small
sample size of each age group (16 vs. 20). A higher number of
participants might have led to a significant, threefold interaction
between the consolidation conditions (sleep vs. wake), the
reward conditions (high vs. low), and the age groups. Another
limitation is that we did not record sleep parameters. Therefore,
all assumptions regarding age-dependent changes in sleep
parameters as an explanation for the indicated group-dependent
memory performance are over-generalized. Another limitation
is the possible ceiling effect in the sleep condition which could
explain the lack of differences in rates of forgetting between
the high- and low-reward items after sleep. However, it should
be noted that the allocation of the card pairs to the high- and
low-reward condition was pseudo-randomized and identical for
all participants. In addition, the use of both picture sets was
counterbalanced across the sleep and wake condition. Since we
only observed a decrease in memory performance with respect to
high-rewarded items in the wake but not in the sleep condition,
the lower memory performance in high-rewarded items cannot
be ascribed to a simple effect of item difficulty or other random
effects. Another limitation might concern the time of day when
experimental sessions were carried out: while encoding in the

sleep condition was conducted in the evening, the encoding
session of the wake condition was performed in the morning,
and the opposite was true for the retrieval sessions. This might
lead to confounding between daytime-dependent tiredness and
memory performance. Please note, that the subjective tiredness
ratings were not different between children and adults with
respect to time of day. Therefore, the difference in memory
performance between children and adults can hardly be ascribed
to simple effects of daytime. Finally, another limitation might
be that the subjectively perceived value of the reward could
not have been the same for children and adults: While children
were told they would receive a small present (less than 2€) for
good performance, adults were told that the best five out of 20
participants would receive 50€ each. Obviously, the amount of the
reward appears to be higher in adults than in children. If however,
the level of reward explains the sleep-dependent impact on high
rewarded items, then one could expect adults to outperform
children. But the opposite pattern was observed.

Taken together, we observed that high-relevant in contrast
to low-relevant memory representations are susceptible to
being forgotten after longer periods of wakefulness, and this
is probably due to retroactive interferences. Sleep, however,
can prevent relevant memory representations from being
forgotten. Moreover, the data indicated that this process is more
pronounced in children than in adults.
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