48 research outputs found

    Activating KRAS Mutations in Arteriovenous Malformations of the Brain: Frequency and Clinicopathologic Correlation

    Get PDF
    Arteriovenous malformations (AVM) of the brain are considered congenital. Most AVMs are presumably sporadic, however rare familial cases occur and they may be observed in certain genetic disorders. We sought to determine the frequency of KRAS mutations and their association with clinicopathologic characteristics. We searched our neuropathology database from 2014–2017 for resected AVMs of the brain or dura mater. Twenty-one AVMs were tested (12 females, 9 males; average age: 32 years). KRAS mutations were found in 6/21 cases (28.5%). Five mutations were p.G12 V, and one p.G12C. The KRAS-mutant group contained 4 females and 2 males, with an average age of 28 years, compared to 34 years in the non-mutant group (P = .54). The average AVM size in the KRAS-mutant group was 3.9 cm, compared to 3.1 cm in the non-mutant group (P = .52). There were no histologic differences between KRAS-mutant and non-mutant cases. In summary, KRAS mutations occur in almost one third of brain AVMs. KRAS p.G12 V was the most common mutation identified. We also demonstrate the first reported instance of a KRAS p.G12C mutation in a brain AVM. The mean age of patients with KRAS-mutant AVMs was lower than the non-mutant group, and the mean size larger. Histologic characteristics were equally distributed between KRAS-mutant and non-mutant groups

    A Systematic Review of Sellar and Parasellar Brown Tumors: An Analysis of Clinical, Diagnostic, and Management Profiles

    Get PDF
    Objective To systematically review and analyze clinical, diagnostic, and management trends in sellar and parasellar brown tumors reported in existing literature. Methods In this systematic review, PubMed, Ovid MEDLINE, Scopus, and Google Scholar databases were searched for reported cases of sellar/parasellar brown tumors. Relevant titles and abstracts were screened in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Articles meeting inclusion criteria were subjected to data extraction, summarization, and analysis. A rare case of parasellar brown tumor was also presented. Results Eight reports (including the current report) were eligible for inclusion. Mean patient age was 42.75 years. Reported symptoms included visual disturbances (n = 6), headache (n = 5), fatigue (n = 3), nausea/vomiting (n = 2), chest pain (n = 1), neck pain (n = 1), and dysphagia (n = 1). In cases where computed tomography findings were provided (n = 6), lesions were noted to be expansile and lytic. Lesions were hyperintense on T2-weighted magnetic resonance imaging (66.7%) and demonstrated contrast enhancement (83.3%). Histology unanimously showed multinucleated giant cells in a fibrovascular connective tissue stroma. Dramatic symptom resolution was noted in all patients who underwent resection of the sellar/parasellar brown tumor (n = 4; 50%). Conclusions Sellar/parasellar brown tumors are a rare, tertiary manifestation of hyperparathyroidism and can be elusive to diagnose. Diagnosis requires a high index of clinical suspicion in addition to comprehensive biochemical testing, imaging, and histopathologic analysis. Surgical extirpation is favored in cases where the lesion is causing compressive symptoms, or if it is unresponsive to management of hyperparathyroidism

    Developmentally arrested structures preceding cerebellar tumors in von Hippel-Lindau disease.

    Get PDF
    There is increasing evidence that suggests that knockout of tumor-suppressor gene function causes developmental arrest and protraction of cellular differentiation. In the peripheral nervous system of patients with the tumor-suppressor gene disorder, von Hippel-Lindau disease, we have demonstrated developmentally arrested structural elements composed of hemangioblast progenitor cells. Some developmentally arrested structural elements progress to a frank tumor, hemangioblastoma. However, in von Hippel-Lindau disease, hemangioblastomas are frequently observed in the cerebellum, suggesting an origin in the central nervous system. We performed a structural and topographic analysis of cerebellar tissues obtained from von Hippel-Lindau disease patients to identify and characterize developmentally arrested structural elements in the central nervous system. We examined the entire cerebella of five tumor-free von Hippel-Lindau disease patients and of three non-von Hippel-Lindau disease controls. In all, 9 cerebellar developmentally arrested structural elements were detected and topographically mapped in 385 blocks of von Hippel-Lindau disease cerebella. No developmentally arrested structural elements were seen in 214 blocks from control cerebella. Developmentally arrested structural elements are composed of poorly differentiated cells that express hypoxia-inducible factor (HIF)2α, but not HIF1α or brachyury, and preferentially involve the molecular layer of the dorsum cerebelli. For the first time, we identify and characterize developmentally arrested structural elements in the central nervous system of von Hippel-Lindau patients. We provide evidence that developmentally arrested structural elements in the cerebellum are composed of developmentally arrested hemangioblast progenitor cells in the molecular layer of the dorsum cerebelli

    Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes

    Get PDF
    The perivascular niche (PVN) plays an essential role in brain tumor stem-like cell (BTSC) fate control, tumor invasion, and therapeutic resistance. Here, a microvasculature-on-a-chip system as a PVN model is used to evaluate the ex vivo dynamics of BTSCs from ten glioblastoma patients. BTSCs are found to preferentially localize in the perivascular zone, where they exhibit either the lowest motility, as in quiescent cells, or the highest motility, as in the invasive phenotype, with migration over long distance. These results indicate that PVN is a niche for BTSCs, while the microvascular tracks may serve as a path for tumor cell migration. The degree of colocalization between tumor cells and microvessels varies significantly across patients. To validate these results, single-cell transcriptome sequencing (10 patients and 21 750 single cells in total) is performed to identify tumor cell subtypes. The colocalization coefficient is found to positively correlate with proneural (stem-like) or mesenchymal (invasive) but not classical (proliferative) tumor cells. Furthermore, a gene signature profile including PDGFRA correlates strongly with the “homing” of tumor cells to the PVN. These findings demonstrate that the model can recapitulate in vivo tumor cell dynamics and heterogeneity, representing a new route to study patient-specific tumor cell functions

    Multimodal Atlas of the Murine Inner Ear: From Embryo to Adult

    Get PDF
    The inner ear is a complex organ housed within the petrous bone of the skull. Its intimate relationship with the brain enables the transmission of auditory and vestibular signals via cranial nerves. Development of this structure from neural crest begins in utero and continues into early adulthood. However, the anatomy of the murine inner ear has only been well-characterized from early embryogenesis to post-natal day 6. Inner ear and skull base development continue into the post-natal period in mice and early adulthood in humans. Traditional methods used to evaluate the inner ear in animal models, such as histologic sectioning or paint-fill and corrosion, cannot visualize this complex anatomy in situ. Further, as the petrous bone ossifies in the postnatal period, these traditional techniques become increasingly difficult. Advances in modern imaging, including high resolution Micro-CT and MRI, now allow for 3D visualization of the in situ anatomy of organs such as the inner ear. Here, we present a longitudinal atlas of the murine inner ear using high resolution ex vivo Micro-CT and MRI

    Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma

    Get PDF
    BACKGROUND: Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a "second hit" mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. METHODS: We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. RESULTS: First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. CONCLUSION: These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC

    Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas

    Get PDF
    RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO4 we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features

    Characterization of Microscopic Multicellular Foci in Grossly Normal Renal Parenchyma of Von Hippel-Lindau Kidney

    No full text
    Background and Objectives: This study aims to describe the earliest renal lesions in patients with von Hippel-Lindau (VHL) disease, especially the multicellular microscopic pathologic events, to get information into the genesis of renal neoplasms in this condition. Materials and Methods: Multicellular events were identified, and 3dimensional reconstruction was performed in grossly normal kidney parenchyma from VHL disease patients by using H&E-stained slides previously prepared. Results: The lesions were measured and the volume of clusters was calculated. Immunohistochemistry was performed for downstream HIF-target protein carbonic anhydrase 9 (CAIX) as well as CD34 for assessment of angiogenesis. We divided lesions into four types according to lesion height/size. The number of lesions was markedly decreased from lesion 1 (smallest) to lesion 2, then from lesions 2 to 3, and again from lesion 3 to 4. Distribution was highly consistent in the four cases, and the same decrement pattern was seen in all blocks studied. The volumes of clusters were measured and divided into three categories according to their volume. The most frequent pathologic event in VHL kidneys was category 1 (smallest volume), then category 2, and then category 3. Conclusion: We demonstrate that tracking histologic and morphologic changes in 3 dimensions of multicellular microscopic pathologic events enabled us to confirm a protracted sequence of events from smaller to larger cellular amplification events in VHL kidney
    corecore