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There is increasing evidence that suggests that knockout of tumor-suppressor gene function causes

developmental arrest and protraction of cellular differentiation. In the peripheral nervous system of patients

with the tumor-suppressor gene disorder, von Hippel–Lindau disease, we have demonstrated developmentally

arrested structural elements composed of hemangioblast progenitor cells. Some developmentally arrested

structural elements progress to a frank tumor, hemangioblastoma. However, in von Hippel–Lindau disease,

hemangioblastomas are frequently observed in the cerebellum, suggesting an origin in the central nervous

system. We performed a structural and topographic analysis of cerebellar tissues obtained from von Hippel–

Lindau disease patients to identify and characterize developmentally arrested structural elements in the central

nervous system. We examined the entire cerebella of five tumor-free von Hippel–Lindau disease patients and of

three non-von Hippel–Lindau disease controls. In all, 9 cerebellar developmentally arrested structural elements

were detected and topographically mapped in 385 blocks of von Hippel–Lindau disease cerebella.

No developmentally arrested structural elements were seen in 214 blocks from control cerebella.

Developmentally arrested structural elements are composed of poorly differentiated cells that express

hypoxia-inducible factor (HIF)2a, but not HIF1a or brachyury, and preferentially involve the molecular layer of

the dorsum cerebelli. For the first time, we identify and characterize developmentally arrested structural

elements in the central nervous system of von Hippel–Lindau patients. We provide evidence that

developmentally arrested structural elements in the cerebellum are composed of developmentally arrested

hemangioblast progenitor cells in the molecular layer of the dorsum cerebelli.
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Von Hippel–Lindau disease is a tumor-suppressor
gene syndrome, characterized by the occurrence
of a set of characteristic tumors.1 The most consis-
tently occurring tumors in patients with von
Hippel–Lindau disease are nervous system heman-
gioblastomas and clear cell renal carcinomas.2
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Hemangioblastomas are composed of von Hippel–
Lindau tumor-suppressor (vhl)-deficient tumor cells
with a hemangioblastic phenotype.3–6 Hemangioblas-
tomas in von Hippel–Lindau disease are not uni-
formly distributed, but are strongly associated with a
limited number of nervous system regions including
the dorsal half of the spinal cord, the obex region of
the brainstem, the cerebellum, and the retina.7

Among these vulnerable nervous system areas, the
cerebellum and the spinal cord are most often
involved.7 Hemangioblastomas can cause significant
morbidity and mortality. Before routine magnetic
resonance imaging screening and neurosurgical re-
section, the cerebellar hemangioblastoma was the
leading cause of death in von Hippel–Lindau
patients.8,9 Emerging evidence suggests that von
Hippel–Lindau patients’ increased risk of hemangio-
blastoma is due to the loss of the vhl’s protein’s
function during nervous system development.10–13

Vhl encodes a multifunctional tumor-suppressor
protein critical for cell differentiation during both
development and adult life.11,12 During mouse fetal
development, homozygous deletion of vhl results in
mid-gestational lethality due to defects in placental
vasculogenesis and cardiac malformations.11 Tissue-
specific inactivation of vhl in mice generally results
in abnormal differentiation, often associated with
decreased proliferation. Abnormal differentiation
has been noted in several tissues, including neu-
rons, mammary and kidney epithelial cells, and
bone.10,11 In embryonic stem cells in vitro, loss of the
vhl function causes differentiation block or delay.
Vhl�/� embryonic stem cells rarely or never give
rise to fully differentiated adult tissues in a primary
culture system.10

A link between developmental arrest and loss of
vhl function is provided by its role as a negative
regulator of the two a-subunits of hypoxia-inducible
factor (HIF), namely HIF1a and HIF2a.14 Both of
these HIFa proteins dimerize with the constitutively
expressed HIFb subunit to form transcription acti-
vators.15,16 HIF-regulated genes include vascular
endothelial growth factor.

A (VEGFA) and carbonic anhydrase IX (CA9).17

Cells with a loss of vhl-mediated HIF degradation
express higher levels of HIFa proteins, VEGFA, and
CA9.18–20 Although the transcriptional conse-
quences and regulation of HIF1a and HIF2a do not
completely overlap, both HIFa subunits have crucial
roles in cell determination and their dysregulation
leads to developmental arrest.14,21–24 In particular,
increased HIF2a expression, like the loss of vhl
function, causes developmental arrest in embryonic
stem cells and dysregulated hematopoiesis.14,23

Therefore, the loss of vhl function can lead to
developmental arrest of cell determination by
dysregulation of HIFa proteins.

Similarly, after structural and molecular analyses
of tissues obtained from von Hippel–Lindau pa-
tients, we previously demonstrated that neoplastic
growth in von Hippel–Lindau disease is associated

with developmental arrest25,26 and that nervous
system tumorigenesis can be characterized as a
process of protracted hemangioblastic differentia-
tion caused by the loss of normal vhl function and
increased expression of HIF2a.27 Disrupted differ-
entiation during development is not unique to von
Hippel–Lindau disease. Most other tumor-suppres-
sor gene disorders not only produce frank tumors
but also developmentally aberrant hamartomatous
structures,26,28–33 which are defined as mature
tissues that have been ‘wrongly assembled in the
course of development.’34

We recently applied a detailed, primarily structur-
al approach to examine the developmental effects of
von Hippel–Lindau disease. It was our hypothesis
that affected organ systems in von Hippel–Lindau
disease would demonstrate structural evidence
of hamartomatous maldevelopment after detailed
analyses. In various tissues obtained from patients
with von Hippel–Lindau disease, including nerve
roots,27,35 epididymis,36,37 and endolymphatic sac,38

we detected various microscopic-sized atypical non-
tumorous structures. As these structures appeared
structurally similar, but cytologically distinct from
previously observed hamartomas, we have used
descriptive terminology in earlier publications, such
as ‘microscopic atypical structures,’ ‘mesenchymal
tumorlet,’ or ‘maldeveloped mesonephric material,’
and others.27,35,37 Subsequent studies have revealed
these structures to be fundamentally different from
‘classic’ hamartomas. First, ‘microscopic atypical
structures’ are composed of immature cells,27,35,37

whereas hamartoma cells are defined as ‘ma-
ture.’34,39–42 Second, a small subset of ‘atypical
structures’ has the capacity to undergo morphologi-
cal and molecular transitions into tumor,27,35,37

whereas hamartomas are not recognized as precur-
sor structures for neoplasia.34,39–42 For simplifica-
tion, here, we propose to use the term
‘developmentally arrested structural element’ for
minute structural events in tissues that escape
classic definitions of either ‘hamartoma’ or ‘tumor’
in tumor-suppressor gene syndromes.

In the nervous system of von Hippel–Lindau
patients, developmentally arrested structural ele-
ments have the potential to progress to tumor, but
up to now, have only been observed in the peripheral
nervous system (PNS).27,35 However, the topographic
distribution of central nervous system tumors in von
Hippel–Lindau disease is strongly indicative of tumor
initiation in the central nervous system proper. The
purpose of this analysis was to identify and char-
acterize cerebellar developmentally arrested structur-
al elements, and to clarify their site of origin.

Materials and methods

Patients

All experiments with human tissues were con-
ducted in accordance with IRB guidelines at the
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National Institutes of Health. The entire cerebella
were collected at the time of autopsy from five
patients with von Hippel–Lindau disease and from
three non-von Hippel–-Lindau disease controls
(Table 1). Control patients showed no evidence of
stigmata of von Hippel–Lindau disease. All five von
Hippel–Lindau disease patients had a documented
germline mutation in the vhl gene. Upon careful
gross examination, none of the cerebellar tissues
revealed detectable tumors.

Tissues

Cerebellar tissues were initially sectioned parasagit-
tally into 3-mm slices. Each slice was then sectioned
into coronal segments for processing in standard
25� 30 mm2 histology cassettes yielding an average
of 75 cassettes per case. A total of 599 cassettes were
processed from the 8 cerebella. Each segment was
fixed in formalin and then embedded in a paraffin
block after tissue exposure to increasing concentra-
tions of ethanol and xylene. A section was cut from
each paraffin block, stained with hematoxylin–eosin
(HE) and then screened for developmentally
arrested structural elements under a light micro-
scope at high power. When microscopic develop-
mentally arrested structural elements were detected
histologically, the paraffin block containing the
developmentally arrested structural element materi-
al and the block coronally en face to it were serially
sectioned at 6 mm. Numerous serial sections (at least
each tenth section) were then stained with HE and
evaluated microscopically. Immunohistochemical
labeling was performed on unstained interval tissue
sections. Immunohistochemistry for CD34, CD31,
CA9, brachyury, HIF1a, and HIF2a was performed as
reported previously;6,35 for comparison, immunohis-
tochemistry was also applied to hemangioblastoma
tumor tissues.

Results

The von Hippel–Lindau Cerebellum Contains
Microscopic Developmentally Arrested Structural
Elements

We have previously demonstrated that at least
a subset of hemangioblastomas originates from

microscopic developmentally arrested structural
elements found abundantly in tumor-free PNS
tissues from von Hippel–Lindau patients.27 Here,
we sought to determine whether developmentally
arrested structural elements similarly exist in the
cerebellum. No developmentally arrested structural
elements were detected in 214 samples from 3
control cerebella. In all, 9 cerebellar developmen-
tally arrested structural elements were detected in
the 385 samples of 5 von Hippel–Lindau cerebella
(Table 2) and topographically mapped (Figure 1).
Developmentally arrested structural elements were
present in four out of the five von Hippel–Lindau
cerebella (Table 2). On HE staining, all nine

Table 1 Age and gender of investigated patients

Patient Age (years) Gender

Control cerebellum no. 1 28 Female
Control cerebellum no. 2 48 Female
Control cerebellum no. 3 49 Male
vhl cerebellum no. 1 54 Male
vhl cerebellum no. 2 17 Female
vhl cerebellum no. 3 39 Male
vhl cerebellum no. 4 47 Male
vhl cerebellum no. 5 26 Female

Table 2 Number of developmentally arrested structural elements
detected in von Hippel–Lindau disease patients and control
tissues

Patients No. cerebellar paraffin
blocks

No. cerebellar
DASEs

Control cerebellum
no. 1

73 0

Control cerebellum
no. 2

66 0

Control cerebellum
no. 3

75 0

vhl cerebellum no. 1 82 4
vhl cerebellum no. 2 87 3
vhl cerebellum no. 3 78 1
vhl cerebellum no. 4 73 1
vhl cerebellum no. 5 65 0

Figure 1 Topographical distribution of nine developmentally
arrested structural elements identified in the cerebella of five von
Hippel–Lindau patients. The developmentally arrested structural
elements are located in the dorsal (circle) and peridorsal (dotted
diamond) cerebellum.
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cerebellar developmentally arrested structural
elements closely resembled previously described
nerve root developmentally arrested structural
elements.27 Developmentally arrested structural
elements measured between 150 mm and o1 mm in
diameter. After serial sectioning of the blocks,
developmentally arrested structural elements
structures were exhausted after 10–90 sections
(60–540-mm deep in the block).

Developmentally Arrested Structural Elements
Preferentially Involve the Molecular Layer of the
Dorsal Cerebellum

Each developmentally arrested structural element
was mapped by serially sectioning both the block in
which the developmentally arrested structural
element was found and the en face block at 6 mm.
Numerous serial sections (at least each tenth
section) were then stained with HE and evaluated
microscopically. Developmentally arrested structur-
al elements were located primarily on the dorsal
aspect of the cerebellum. Seven out of nine devel-
opmentally arrested structural elements were
located in the dorsal cerebellum, whereas two
developmentally arrested structural elements were
identified close to the dorsal surface (Figure 1). All
nine developmentally arrested structural elements
involved the molecular layer of the cerebellar cortex.
Three developmentally arrested structural elements
were located exclusively in the molecular layer,
whereas no developmentally arrested structural
elements were found exclusively in the granular
cell layer or the deep cerebellar white matter
(Figure 2). Six developmentally arrested structural
elements extended to the granular cell layer from the
molecular layer.

Cerebellar Developmentally Arrested Structural
Elements are Composed of Immature Cells with
Activation of HIF2a

Increased expression of HIFa subunits and CA9 are
associated with vhl inactivation. Developmentally
arrested structural elements are composed of poorly
differentiated cells that express CA9, HIF2a, but not
HIF1a (Figure 2). In contrast, hemangioblastoma
tumor cells are known to be immunopositive
for both HIF2a and HIF1a,43,44 as well as CA9.35

For peripheral nerve tissue, we recently showed in
autopsy materials35 and in surgically resected
materials27 that developmentally arrested structural
elements have the potential to progress from CA9þ /
HIF2aþ /HIF1a� to the well-known CA9þ /HIF2a
þ /HIF1aþ hemangioblastoma phenotype. Sur-
rounding cerebellar tissues never showed expres-
sion of CA9, HIF2a, or HIF1a (Figure 2, result
for CA9 not shown). Consistent with their imma-
ture phenotype, poorly differentiated cells did not
express brachyury, a developmental marker of

hemangioblasts,6,45 whereas hemangioblastoma
tumor cells are immunopositive for brachyury as
reported previously.6 Immunohistochemical stain-
ing with the vascular antibodies CD34 and CD31
showed identical results indicative of abundant
reactive vascularization in developmentally arrested
structural elements (Figure 2).

Discussion

Searching for hamartomatous maldevelopment, in
this study and in other previous studies, we
performed detailed analyses of tumor-free organ
tissues of von Hippel–Lindau patients.25,35–38 All
investigated organs contained significant numbers
of microscopic, developmentally arrested structures
that were, however, different from classic hamarto-
mas.25,36–38 First, we demonstrated that these
microscopic structures were in part composed of
immature cells;25,37 second, we demonstrated that
a subset of these microscopic structures could
progress to tumors.27,35,37 We suggest that these
developmentally arrested structures should be un-
derstood as distinct from hamartomas and propose
that these structures be distinguished from hamar-
tomas by designating them as ‘developmentally
arrested structural elements.’ The presence
of developmentally arrested structural elements in
von Hippel–Lindau disease is consistent with recent
observations suggesting that the loss of vhl function
leads to differentiation arrest during the develop-
ment of multiple organ systems.10,35–37 It remains to
be shown whether equivalents for developmentally
arrested structural elements exist in other tumor-
suppressor gene syndromes, as well as whether
some of the ‘hamartomatous structures’ in other
tumor-suppressor gene syndromes are also tumor
precursor structures that arise because of develop-
mental arrest.

Here, we provide the first detailed analysis of
the effects of vhl germline mutation in brain tissues.
Our results were obtained after sectioning 5 cere-
bella from von Hippel–Lindau patients into a total of
385 segments and submitting all of them for
histopathological evaluation. Our search resulted
in the identification of nine developmentally ar-
rested structural elements. No developmentally
arrested structural elements were found in 214
segments of cerebella from 3 control patients.
Importantly, our numeric developmentally arrested
structural element counts reflect the number of
developmentally arrested structural elements at 3-
mm intervals within the cerebellar tissue, and the
actual number of cerebellar developmentally ar-
rested structural elements may be significantly
higher. However, given that the same screening
procedure was previously used for nerve root tissue
adjacent to spinal cord,35 the number of cerebellar
developmentally arrested structural elements ap-
pears small compared with that observed in the
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Figure 2 Cerebellar developmentally arrested structural elements are composed of immature progenitor cells with activation of HIF2a
and intense reactive angiogenesis. (a) Normal cerebellum, HE stain (1a). No activation of HIF2a (2a), HIF1a (3a), or brachyury (4a);
immunohistochemistry for CD34 shows regular vascularization (5a). (b) Microscopic-sized developmentally arrested structural elements
in molecular layer (HE stain, 1b) shows HIF2a activation in immature progenitor cells (2b) and the absence of HIF1a activation (3b);
developmentally arrested structural element cells do not express brachyury (4b); immunohistochemistry for CD34 shows abundant
vascularization (5b). (c) Frank tumor, hemangioblastoma (HE stain, 1c), reveals activation of both HIF2a (2c) and HIF1a (3c); expression of
brachyury (4c); immunohistochemistry for CD34 shows abundant vascularization (5c).
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nerve root tissue in von Hippel–Lindau disease. At
first glance, this seems to contradict earlier studies
that report cerebellar hemangioblastomas to occur
most frequently in the cerebellum;9,46–48 however,
after the use of more sensitive imaging techniques,
the incidence of spinal hemangioblastomas has been
reported as more frequent compared with cerebellar
tumors in von Hippel–Lindau disease.49,50

Consistent with a developmental origin, cerebellar
developmentally arrested structural elements were
preferentially located in the molecular layer of the
dorsal cerebellum. A similar pattern of preferential
distribution was previously noted in the vicinity of
the spinal cord with dorsal nerve roots being far
more frequently affected compared with anterior
nerve roots.25,35 Lindau4 also noted a third promi-
nent von Hippel–Lindau syndrome tumor distribu-
tion pattern when he identified the obex as
the predilection site for hemangioblastomas of the
brainstem.

Cerebellar developmentally arrested structural
elements strikingly resemble those previously
observed in the nerve root tissue.27 The smallest
cerebellar developmentally arrested structural
elements consist only of few scattered immature
cells and are confined to the molecular layer.
Immature cells show exclusive activation of HIF2a
(Figure 2), in contrast to frank cerebellar tumors that
show activation of both HIF2a and HIF1a (Figure 2).
In developmentally arrested structural elements,
activation of HIF2a upregulates VEGFA,24,51 result-
ing in intense secondary angiogenesis.37 Similarly,
others have shown activation of HIF2a, but not
of HIF1a, in embryonic stem cells before further
differentiation commitment.10 Through the tran-
scription factor OCT4, HIF2a maintains cell plur-
ipotency in multiple stem and progenitor cells
during development, including in embryonic stem
cells.14,23 Consistent with this, HIF2a knockout
embryos display severe developmental patterning
defects.14

We conclude that developmentally arrested struc-
tural elements in the von Hippel–Lindau cerebellum
are composed of developmentally arrested heman-
gioblast progenitor cells in the molecular layer, with

activation of HIF2a, but not of HIF1a. In contrast,
frank tumors acquire a hemangioblastic phenotype
with additional activation of HIF1a and expression
of brachyury, among other markers of hemangio-
blastic differentiation. Our findings suggest that in
von Hippel–Lindau disease, the loss of vhl-mediated
degradation of HIF2a causes multifocal accumula-
tion of developmentally arrested hemangioblast
progenitor cells that serve as potential precursor
material for hemangioblastic tumors (Figure 3).
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