8 research outputs found

    Starch-Coated Magnetic Iron Oxide Nanoparticles for Affinity Purification of Recombinant Proteins

    No full text
    Starch-coated magnetic iron oxide nanoparticles have been synthesized by a simple, fast, and cost-effective co-precipitation method with cornstarch as a stabilizing agent. The structural and magnetic characteristics of the synthesized material have been studied by transmission electron microscopy, Mössbauer spectroscopy, and vibrating sample magnetometry. The nature of bonds between ferrihydrite nanoparticles and a starch shell has been examined by Fourier transform infrared spectroscopy. The data on the magnetic response of the prepared composite particles have been obtained by magnetic measurements. The determined magnetic characteristics make the synthesized material a good candidate for use in magnetic separation. Starch-coated magnetic iron oxide nanoparticles have been tested as an affinity sorbent for one-step purification of several recombinant proteins (cardiac troponin I, survivin, and melanoma inhibitory activity protein) bearing the maltose-binding protein as an auxiliary fragment. It has been shown that, due to the highly specific binding of this fragment to the starch shell, the target fusion protein is selectively immobilized on magnetic nanoparticles and eluted with the maltose solution. The excellent efficiency of column-free purification, high binding capacity of the sorbent (100–500 µg of a recombinant protein per milligram of starch-coated magnetic iron oxide nanoparticles), and reusability of the obtained material have been demonstrated

    Synthesis, Structure, and Properties of EuLnCuSe<sub>3</sub> (Ln = Nd, Sm, Gd, Er)

    No full text
    EuLnCuSe3 (Ln = Nd, Sm, Gd, Er), due to their complex composition, should be considered new materials with the ability to purposefully change the properties. Samples of the EuLnCuSe3 were prepared using Cu, rare earth metal, Se (99.99%) by the ampoule method. The samples were obtained by the crystallization from a melt and annealed at temperatures 1073 and 1273 K. The EuErCuSe3 crystal structure was established using the single-crystal particle. EuErCuSe3 crystallizes in the orthorhombic system, space group Cmcm, KCuZrS3 structure type, with cell parameters a = 4.0555 (3), b = 13.3570 (9), and c = 10.4602 (7) Å, V = 566.62 (6) Å3. In structure EuErCuSe3, erbium ions are coordinated by selenium ions in the octahedral polyhedron, copper ions are in the tetrahedral coordination, europium ions are between copper and erbium polyhedra layers and are coordinated by selenium ions as two-cap trigonal prisms. The optical band gap is 1.79 eV. At 4.7 K, a transition from the ferrimagnetic state to the paramagnetic state was detected in EuErCuSe3. At 85 and 293 K, the compound is in a paramagnetic state. According to XRPD data, EuLnCuSe3 (Ln = Nd, Sm, Gd) compounds have a Pnma orthorhombic space group of the Eu2CuS3 structure type. For EuSmCuSe3, a = 10.75704 (15) Å, b = 4.11120 (5) Å, c = 13.37778 (22) Å. In the series of EuLnCuSe3 compounds, the optical band gap increases 1.58 eV (Nd), 1.58 eV (Sm), 1.72 eV (Gd), 1.79 eV (Er), the microhardness of the 205 (Nd), 210 (Sm), 225 (Gd) 235 ± 4 HV (Er) phases increases, and the thermal stability of the phases increases significantly. According to the measurement data of differential scanning calorimetry, the EuNdCuSe3 decomposes, according to the solid-phase reaction T = 1296 K, ΔH = 8.2 ± 0.8 kJ/mol. EuSmCuSe3 melts incongruently T = 1449 K, ΔH = 18.8 ± 1.9 kJ/mol. For the EuGdCuSe3, two (Tα↔β = 1494 K, ΔHα↔β = 14.8 kJ/mol, Tβ↔γ = 1530 K, ΔHβ↔γ = 4.8 kJ/mol) and for EuErCuSe3 three polymorphic transitions (Tα↔β = 1561 K, ΔHα↔β = 30.3 kJ/mol, Tβ↔γ = 1579 K, ΔHβ↔γ = 4.4 kJ/mol, and Tγ↔δ = 1600 K, ΔHγ↔δ = 10.1 kJ/mol). The compounds melt incongruently at the temperature of 1588 K, ΔHmelt = 17.9 ± 1.8 kJ/mol and 1664 K, ΔHmelt = 25.6 ± 2.5 kJ/mol, respectively. Incongruent melting of the phases proceeds with the formation of a solid solution of EuSe and a liquid phase

    The Oxidation-Induced Autofluorescence Hypothesis: Red Edge Excitation and Implications for Metabolic Imaging

    No full text
    Endogenous autofluorescence of biological tissues is an important source of information for biomedical diagnostics. Despite the molecular complexity of biological tissues, the list of commonly known fluorophores is strictly limited. Still, the question of molecular sources of the red and near-infrared excited autofluorescence remains open. In this work we demonstrated that the oxidation products of organic components (lipids, proteins, amino acids, etc.) can serve as the molecular source of such red and near-infrared excited autofluorescence. Using model solutions and cell systems (human keratinocytes) under oxidative stress induced by UV irradiation we demonstrated that oxidation products can contribute significantly to the autofluorescence signal of biological systems in the entire visible range of the spectrum, even at the emission and excitation wavelengths higher than 650 nm. The obtained results suggest the principal possibility to explain the red fluorescence excitation in a large class of biosystems&mdash;aggregates of proteins and peptides, cells and tissues&mdash;by the impact of oxidation products, since oxidation products are inevitably presented in the tissue. The observed fluorescence signal with broad excitation originated from oxidation products may also lead to the alteration of metabolic imaging results and has to be taken into account

    Correction of disorders in tissue perfusion, blood coagulation and fibrinolysis with Orbita apparatus on terahertz waves of cell metabolites

    No full text
    This article contains information on principle of operation, technical parameters and possible application of Orbita {transliteration from Russian} apparatus for hemodynamic, fibrinolytic and peripheral perfusion disorders treatment. A single exposure to terahertz waves emitted by Orbita apparatus, corresponding to frequencies of molecular absorption and emission spectra of atmospheric oxygen (129.0 GHz), completely cures coagulant and fibrinolytic disorders of animals with acute immobilization stress. A course of treatment with electromagnetic waves corresponding to frequencies of molecular absorption and emission spectra of nitrogen oxide (150.176 – 150.664) leads to normalization of disrupted peripheral tissue perfusion parameters of animal undergoing treatment and stimulates basal and induced output of nitrogen oxide. This leads to decrease in peripheral vascular resistance to microcirculation and increase in blood flow to microvasculature. Experimental data provided in this article serves as a proof of viability of Orbita apparatus for treatment of coagulant, fibrinolytic and tissue perfusion disorders

    A Challenge toward Novel Quaternary Sulfides SrLnCuS3 (Ln = La, Nd, Tm): Unraveling Synthetic Pathways, Structures and Properties

    Get PDF
    We report on the novel heterometallic quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm), obtained as both single crystals and powdered samples. The structures of both the single crystal and powdered samples of SrLaCuS3 and SrNdCuS3 belong to the orthorhombic space group Pnma but are of different structural types, while both samples of SrTmCuS3 crystallize in the orthorhombic space group Cmcm with the structural type KZrCuS3. Three-dimensional crystal structures of SrLaCuS3 and SrNdCuS3 are formed from the (Sr/Ln)S7 capped trigonal prisms and CuS4 tetrahedra. In SrLaCuS3, alternating 2D layers are stacked, while the main backbone of the structure of SrNdCuS3 is a polymeric 3D framework [(Sr/Ln)S7]n, strengthened by 1D polymeric chains (CuS4)n with 1D channels, filled by the other Sr2+/Ln3+ cations, which, in turn, form 1D dimeric ribbons. A 3D crystal structure of SrTmCuS3 is constructed from the SrS6 trigonal prisms, TmS6 octahedra and CuS4 tetrahedra. The latter two polyhedra are packed together into 2D layers, which are separated by 1D chains (SrS6)n and 1D free channels. In both crystal structures of SrLaCuS3 obtained in this work, the crystallographic positions of strontium and lanthanum were partially mixed, while only in the structure of SrNdCuS3, solved from the powder X-ray diffraction data, were the crystallographic positions of strontium and neodymium partially mixed. Band gaps of SrLnCuS3 (Ln = La, Nd, Tm) were found to be 1.86, 1.94 and 2.57 eV, respectively. Both SrNdCuS3 and SrTmCuS3 were found to be paramagnetic at 20&ndash;300 K, with the experimental magnetic characteristics being in good agreement with the corresponding calculated parameters

    Co5/3Nb1/3BO4: A new cobalt oxyborate with a complex magnetic structure

    Get PDF
    Needle-shape single crystals of Co5/3Nb1/3BO4 warwickite were grown using the flux technique. X-ray diffraction measurements have revealed an orthorhombic structure (Sp. Gr. Pbnm) where the octahedral M1 site is occupied by a mixture of Co2+/Nb5+ ions and the M2 site is exclusively filled by Co2+ ions. Using dc magnetization measurements it was established that the new material undergoes two magnetic transitions: an antiferromagnetic transition at TN1 = 27 K and a ferrimagnetic one at TN2 = 14 K, below which a hysteresis cycle opens. Both magnetic transitions are marked by anomalies in the specific heat. High magnetic anisotropy with c-axis as a hard magnetization direction was detected.This work has been financed by the Russian Foundation for Basic Research (project no. 20-02-00559). We acknowledge financial support from the Spanish MINECO DWARFS project MAT2017-83468-R and Gobierno de Aragón (Group, E12-20R).Peer reviewe

    Наночастицы Mg@Ni, их получение и свойства

    No full text
    In this paper, we study particles with metallic core (magnesium) – metal shell (nickel) structure, syn- thesized in metal-containing plasma of high frequency arc discharge. X-ray diffraction analysis, X-ray fluorescence analysis and scanning electron microscopy show that the particles have a uniform nickel shell, which is also indirectly confirmed by comparing the results of hydrogenation of Mg and Mg@Ni particles. Measurement of volume magnetization indicates that shell thickness of most particles is not more than 22 nm.В данной работе исследованы частицы со структурой металлическое ядро (магний) – металлическая оболочка (никель), полученные в металлсодержащей высокочастотной плазме дугового разряда. Методами рентгенофазового анализа, рентгенофлуоресцентного анализа, сканирующей электронной микроскопии показано, что частицы имеют сплошную никелевую оболочку, что также косвенно подтверждается сравнением результатов гидрирования частиц Mg и Mg@Ni. С помощью измерений объемной намагниченности установлено, что наибольшая часть частиц имеет толщину оболочек не более 22 н
    corecore