8,466 research outputs found

    Bridge trisections of knotted surfaces in 4--manifolds

    Full text link
    We prove that every smoothly embedded surface in a 4--manifold can be isotoped to be in bridge position with respect to a given trisection of the ambient 4--manifold; that is, after isotopy, the surface meets components of the trisection in trivial disks or arcs. Such a decomposition, which we call a \emph{generalized bridge trisection}, extends the authors' definition of bridge trisections for surfaces in S4S^4. Using this new construction, we give diagrammatic representations called \emph{shadow diagrams} for knotted surfaces in 4--manifolds. We also provide a low-complexity classification for these structures and describe several examples, including the important case of complex curves inside CP2\mathbb{CP}^2. Using these examples, we prove that there exist exotic 4--manifolds with (g,0)(g,0)--trisections for certain values of gg. We conclude by sketching a conjectural uniqueness result that would provide a complete diagrammatic calculus for studying knotted surfaces through their shadow diagrams.Comment: 17 pages, 5 figures. Comments welcom

    Characterizing Dehn surgeries on links via trisections

    Full text link
    We summarize and expand known connections between the study of Dehn surgery on links and the study of trisections of closed, smooth 4-manifolds. In addition, we describe how the potential counterexamples to the Generalized Property R Conjecture given by Gompf, Scharlemann, and Thompson yield genus four trisections of the standard four-sphere that are unlikely to be standard. Finally, we give an analog of the Casson- Gordon Rectangle Condition for trisections that can be used to obstruct reducibility of a given trisection.Comment: 15 pages, 4 color figures. Comments welcome

    Heterodyne Doppler global velocimetry

    Get PDF
    Doppler Global Velocimetry (DGV) is an imaging flow measurement technique which allows the measurement of the velocity distribution in a plane. In DGV the frequency shift of scattered light from moving particles within the flow is used to determine the local flow velocity. Heterodyne Doppler Global Velocimetry (HDGV) is a new approach which combines the imaging and geometrical characteristics of DGV with the measurement principles of reference beam laser Doppler anemometry. The frequency shifted scattered light from the flow tracers is heterodyned with a reference beam from the same light source. Due to interference the result of this superposition is a harmonic intensity modulated signal. This signal is detected using a smart pixel detector array to obtain the velocity distribution. Two different experiments are presented. The first experiment compares the measured velocity distribution of a rotating disk with its actual velocity. The second experiment demonstrates the capability of the technique to measure a real flo

    Imaging laser Doppler velocimetry

    Get PDF
    Imaging laser Doppler velocimetry (ILDV) is a novel flow measurement technique, which enables the measurement of the velocity in an imaging plane. It is an evolution of heterodyne Doppler global velocimetry (HDGV) and may be regarded as the planar extension of the classical dual-beam laser Doppler velocimetry (LDV) by crossing light sheets in the flow instead of focused laser beams. Seeding particles within the flow are illuminated from two different directions, and the light scattered from the moving particles exhibits a frequency shift due to the Doppler effect. The frequency shift depends on the direction of the illumination and the velocity of the particle. The superposition of the two different frequency-shifted signals on the detector creates interference and leads to an amplitude modulated signal wherein the modulation frequency depends on the velocity of the particle. This signal is detected using either a high-speed camera or alternatively a smart pixel imaging array. This detector array performs a quadrature detection on each pixel with a maximum demodulation frequency of 250kHz. To demonstrate the feasibility of the technique, two experiments are presented: The first experiment compares the measured velocity distribution of a free jet using ILDV performed with the smart pixel detector array and a high-speed camera with a reference measurement using PIV. The second experiment shows an advanced setup using two smart pixel detector arrays to measure the velocity distribution on a rotating disk, demonstrating the potential of the technique for high-velocity flow measurement

    A finder and representation system for knowledge carriers based on granular computing

    Get PDF
    In one of his publications Aristotle states ”All human beings by their nature desire to know” [Kraut 1991]. This desire is initiated the day we are born and accompanies us for the rest of our life. While at a young age our parents serve as one of the principle sources for knowledge, this changes over the course of time. Technological advances and particularly the introduction of the Internet, have given us new possibilities to share and access knowledge from almost anywhere at any given time. Being able to access and share large collections of written down knowledge is only one part of the equation. Just as important is the internalization of it, which in many cases can prove to be difficult to accomplish. Hence, being able to request assistance from someone who holds the necessary knowledge is of great importance, as it can positively stimulate the internalization procedure. However, digitalization does not only provide a larger pool of knowledge sources to choose from but also more people that can be potentially activated, in a bid to receive personalized assistance with a given problem statement or question. While this is beneficial, it imposes the issue that it is hard to keep track of who knows what. For this task so-called Expert Finder Systems have been introduced, which are designed to identify and suggest the most suited candidates to provide assistance. Throughout this Ph.D. thesis a novel type of Expert Finder System will be introduced that is capable of capturing the knowledge users within a community hold, from explicit and implicit data sources. This is accomplished with the use of granular computing, natural language processing and a set of metrics that have been introduced to measure and compare the suitability of candidates. Furthermore, are the knowledge requirements of a problem statement or question being assessed, in order to ensure that only the most suited candidates are being recommended to provide assistance
    corecore