research

Bridge trisections of knotted surfaces in 4--manifolds

Abstract

We prove that every smoothly embedded surface in a 4--manifold can be isotoped to be in bridge position with respect to a given trisection of the ambient 4--manifold; that is, after isotopy, the surface meets components of the trisection in trivial disks or arcs. Such a decomposition, which we call a \emph{generalized bridge trisection}, extends the authors' definition of bridge trisections for surfaces in S4S^4. Using this new construction, we give diagrammatic representations called \emph{shadow diagrams} for knotted surfaces in 4--manifolds. We also provide a low-complexity classification for these structures and describe several examples, including the important case of complex curves inside CP2\mathbb{CP}^2. Using these examples, we prove that there exist exotic 4--manifolds with (g,0)(g,0)--trisections for certain values of gg. We conclude by sketching a conjectural uniqueness result that would provide a complete diagrammatic calculus for studying knotted surfaces through their shadow diagrams.Comment: 17 pages, 5 figures. Comments welcom

    Similar works

    Full text

    thumbnail-image

    Available Versions