19 research outputs found

    Effective Theories of Gamma-ray Lines from Dark Matter Annihilation

    Get PDF
    We explore theories of dark matter in which dark matter annihilations produce mono-energetic gamma rays ("lines") in the context of effective field theory, which captures the physics for cases in which the particles mediating the interaction are somewhat heavier than the dark matter particle itself. Building on earlier work, we explore the generic signature resulting from SU(2)xU(1) gauge invariance that two (or more) lines are generically expected, and determine the expected relative intensities, including the possibility of interference between operators.Comment: 11 pages, 0 figure

    Higgs Boson Decays to Dark Photons through the Vectorized Lepton Portal

    Full text link
    Vector-like fermions charged under both the Standard Model and a new dark gauge group arise in many theories of new physics. If these fermions include an electroweak doublet and singlet with equal dark charges, they can potentially connect to the Higgs field through a Yukawa coupling in analogy to the standard neutrino portal. With such a coupling, fermion loops generate exotic decays of the Higgs boson to one or more dark vector bosons. In this work we study a minimal realization of this scenario with an Abelian dark group. We investigate the potential new Higgs decays modes, we compute their rates, and we study the prospects for observing them at the Large Hadron Collider and beyond given the other experimental constraints on the theory. We also discuss extensions of the theory to non-Abelian dark groups.Comment: 32 pages, 5 figures, updated to match JHEP versio

    Particle Physics Implications and Constraints on Dark Matter Interpretations of the CDMS Signal

    Full text link
    Recently the CDMS collaboration has reported an excess of events in the signal region of a search for dark matter scattering with Silicon nuclei. Three events on an expected background of 0.4 have a significance of about 2 sigma, and it is premature to conclude that this is a signal of dark matter. Nonetheless, it is important to examine the space of particle theories capable of explaining this excess, to see what theories are capable of explaining it, and how one might exclude it or find corroborating evidence in other channels. We examine a simplified model containing a scalar mediator particle, and find regions consistent with the CDMS observations. Bounds from colliders put important restrictions on the theory, but viable points, including points leading to the observed thermal relic density, survive.Comment: 16 pages, 6 figure

    Power Corrections to the Universal Heavy WIMP-Nucleon Cross Section

    Get PDF
    WIMP-nucleon scattering is analyzed at order 1/M1/M in Heavy WIMP Effective Theory. The 1/M1/M power corrections, where M≫mWM\gg m_W is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total 1/M1/M correction, and a total cross section close to the universal limit for M≳few×100 GeVM \gtrsim {\rm few} \times 100\,{\rm GeV}. For the SU(2) composite scalar, the 1/M1/M corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total 1/M1/M correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime.Comment: 12 pages, 4 figures; references added, XENONnT projection included, version to appear in Physics Letters

    Compatibility of theta13 and the Type I Seesaw Model with A4 Symmetry

    Get PDF
    We derive formulae for neutrino masses and mixing angles in a type I seesaw framework with an underlying A4 flavor symmetry. In particular, the Majorana neutrino mass matrix includes contributions from an A4 triplet, 1, 1', and 1" flavon fields. Using these formulae, we constrain the general A4 parameter space using the updated global fits on neutrino mixing angles and mass squared differences, including results from the Daya Bay and RENO experiments, and we find predictive relations among the mixing parameters for certain choices of the triplet vacuum expectation value. In the normal hierarchy case, sizable deviation from maximal atmospheric mixing is predicted, and such deviation is strongly correlated with the value of theta13 in the range of ~ (8-10) degrees. On the other hand, such deviation is negligible and insensitive to theta13 in the inverted mass hierarchy case. We also show expectations for the Dirac CP phase resulting from the parameter scan. Future refined measurements of neutrino mixing angles will test these predicted correlations and potentially show evidence for particular triplet vev patterns.Comment: 22 Pages, 3 Figures; v2: version to appear in JHE

    Power Corrections to the Universal Heavy WIMP-Nucleon Cross Section

    Get PDF
    WIMP-nucleon scattering is analyzed at order 1/M in Heavy WIMP Effective Theory. The 1/M power corrections, where M ≫ mW is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total 1/M correction, and a total cross section close to the universal limit for M ≳ few x 100 GeV. For the SU(2) composite scalar, the 1/M corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total 1/M correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime

    LHC Bounds on Interactions of Dark Matter

    Full text link
    We derive limits on the interactions of dark matter with quarks from ATLAS null searches for jets + missing energy based on ~1 fb^-1 of integrated luminosity, using a model-insensitive effective theory framework. We find that the new limits from the LHC significantly extend limits previously derived from CDF data at the Tevatron. Translated into the parameter space of direct searches, these limits are particularly effective for ~GeV mass WIMPs. Our limits indicate tension with isospin violating models satisfying minimal flavor violation which attempt to reconcile the purported CoGeNT excess with Xenon-100, indicating that either a light mediator or nontrivial flavor structure for the dark sector is necessary for a viable reconciliation of CoGeNT with Xenon.Comment: 20 pages, 11 figure

    Power corrections to the universal heavy WIMP-nucleon cross section

    Get PDF
    WIMP-nucleon scattering is analyzed at order 1/M in Heavy WIMP Effective Theory. The 1/M power corrections, where M ≫ m_W is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total 1/M correction, and a total cross section close to the universal limit for M ≳ few x 100 GeV. For the SU(2) composite scalar, the 1/M corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total 1/M correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime

    Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond

    Full text link
    In this report we summarize the many dark matter searches currently being pursued through four complementary approaches: direct detection, indirect detection, collider experiments, and astrophysical probes. The essential features of broad classes of experiments are described, each with their own strengths and weaknesses. The complementarity of the different dark matter searches is discussed qualitatively and illustrated quantitatively in two simple theoretical frameworks. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program drawing from all four approaches.Comment: Report prepared for the Community Summer Study (Snowmass) 2013, on behalf of Cosmic Frontier Working Groups 1-4 (CF1: WIMP Dark Matter Direct Detection, CF2: WIMP Dark Matter Indirect Detection, CF3: Non-WIMP Dark Matter, and CF4: Dark Matter Complementarity); published versio
    corecore