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1 Introduction

With the independent discoveries of a nonzero θ13 from the Daya Bay [1] and RENO [2] col-

laborations, and the supporting hints from the T2K [3], MINOS [4], and Double Chooz [5]

experiments, we now possess the first complete experimental picture of the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) mixing matrix. Following a recent global analysis of neu-

trino oscillation parameters from ref. [6] (see also [7–9] and [10–12]), we can summarize the

experimental status to date as

sin2 θ12 = 0.320+0.015
−0.017 , (1.1)

sin2 θ23 =

{

0.49+0.08
−0.05 (Normal)

0.53+0.05
−0.07 (Inverted)

, (1.2)

sin2 θ13 =

{

0.026+0.003
−0.004 (Normal)

0.027+0.003
−0.004 (Inverted)

, (1.3)

∆m2
21 = 7.62± 0.19× 10−5 eV2 , (1.4)

∆m2
31 =

{

2.53+0.08
−0.10 × 10−3 eV2 (Normal)

−(2.40+0.10
−0.07)× 10−3 eV2 (Inverted)

. (1.5)

Before the θ13 6= 0 discovery, the PMNS matrix was consistent with the tribimaximal

(TBM) mixing pattern [13], which can be written as

UTBM =



















2√
6

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2



















, (1.6)
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where we have adopted the same phase convention as the PDG [14] for placement of the

minus signs. The TBM mixing pattern gives the solar mixing angle corresponding to

sin2 θ12 = 1/3, the atmospheric mixing angle sin2 θ23 = 1/2, and reactor mixing angle

sin2 θ13 = 0. Neutrino mass matrices that give rise to TBM mixing have distinct invari-

ants that can be traced to discrete symmetries such as the Klein Z2 × Z2 group or the

symmetry group S4 [15–18] (see also, [19]). On the other hand, by introducing dynamical

(flavon) fields, the TBM mixing pattern can arise from a smaller underlying finite group,

the tetrahedral group, A4. To be compatible with grand unification, a successful generation

of appropriate lepton and quark masses and mixing angles can be achieved by considering

T ′, the double covering group of A4. In an SU(5) grand unified model [20], the T ′ group

also affords a novel origin of CP violation from complex Clebsch-Gordan coefficients [21],

while in a Randall-Sundrum model [22, 23], the T ′ flavor symmetry is simultaneously used

to forbid tree-level flavor-changing neutral currents (FCNCs). For reviews of the status of

A4 and S4 models, the tribimaximal and bimaximal paradigm, see [24–26]. For early work

in mixing and GUT theories, see [27].

The literature on the interrelation between TBM neutrino mixing matrices and finite

group flavor symmetries is vast. With discovery of a nonzero θ13 from Daya Bay and RENO,

however, the TBM prediction for a vanishing reactor angle is ruled out, calling into question

the entire TBM paradigm. We emphasize, however, that the underlying flavor symmetries

that naturally give rise to TBM mixing are nevertheless viable options for explaining the

updated PMNS mixing pattern. In particular, we demonstrate that A4, when we include

flavons that are not included in the usual TBM analysis, can readily accommodate a large

value of θ13 and retain predictivity for δ, the PMNS CP -violating Dirac phase.

Work before the Daya Bay and RENO results that focused on finite group symme-

tries and generating nonzero θ13 includes [28], which studied corrections to TBM from

higher dimensional operators and [29], which discussed renormalization group (RG) equa-

tions in see-saw models. More recent work looking to use higher dimensional operators to

generate violations of the TBM scheme or neutrino phenomenology include [30, 31]. The

authors of [32] conclude higher dimension operators and RG effects are equally important

for leptogenesis. In [33], it was found that the size of corrections to neutrino mixing sum

rules coming from renormalization group running are small. Correspondingly, in [34], it

was shown that a large θ13 value cannot be generated through running if θ13 starts at 0.

In [35], NLO and NNLO expressions were given for neutrino mixing angles in hierarchal

mass scenarios with sequential dominance.

Nevertheless, we note that it is possible, with the so-called Hilbert basis method [36],

to construct supersymmetric models where these higher dimensional operators in the holo-

morphic superpotential vanish. On the other hand, certain flavon-induced corrections in

the non-holomorphic Kähler potential [37] cannot be forbidden by any conventional sym-

metries. Hence, even in the original A4 models where θ13 vanishes at leading order, once

these Kähler corrections are properly taken into account, a sizable θ13 can be attained that

is compatible with the current experimental value [38].

Much of the recent literature has focused solely on accommodating non-zero θ13 with

low-energy perturbations to the TBM matrix and ignore or only briefly discuss the pos-
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sible underlying UV physics responsible for these deviations. In this vein, one popular

parametrization was introduced in [39], which introduced deviations from TBM values us-

ing s, a, and r for the solar, atmospheric, and reactor mixing angles, respectively. Further

work along this line, such as parameter scans in this space of deviations, include [40–48]

and also [49–52], which used a similar approach but an equivalent set of parameters. One

drawback of such approaches is that complete UV flavor models generally predict additional

flavor violating effects, which are not captured in these low-energy deviation studies [53].

Separately, TBM and BM mixing scenarios were studied for the case of nearly degenerate

neutrino masses where loop corrections provide large effects in mixing angles [54]. Loop

corrections to the Type I seesaw Majorana neutrino mass matrix leading to nonzero θ13
were also studied in [55]. Studies of generating nonzero θ13 from breaking µ-τ symmetry

include [56–58].

In this work, we adopt a top-down approach where we will constrain the UV parameter

space by the low energy neutrino observables. While other A4 studies may have looked

at the additional effects from 1′ and 1′′ flavons contributing to the Majorana neutrino

mass matrix, including [59–65], they have generally considered the pattern of the vacuum

expectation value (VEV) of the triplet flavon to be ∝ (1, 1, 1)T . Some earlier work has

separately considered other forms of the triplet flavon, such as [66]. In addition, recent

literature has focused on small perturbations from the (1, 1, 1)T triplet flavon structure as

a mechanism for generating a nonzero θ13 [59, 67–69], where this small perturbation may

arise from a vacuum misalignment correction.

In contrast, our work considers the full parameter space of A4 flavons contributing to

the Majorana mass matrix in the Type I seesaw. Thus we consider triplet flavon vevs that

are markedly different from the usual TBM (1, 1, 1)T form simultaneously with the presence

of 1′ and 1′′ flavons. By looking at a completely general admixture of possibly flavon vevs,

we can definitively constrain the entire A4 parameter space in this Type I seesaw model.

We remark that for the charged lepton masses and the Dirac neutrino masses, we introduce

the minimal field content to generate their mass matrices and only introduce the full flavon

field content for the RH neutrino masses. Moreover, even though we consider a larger A4

parameter space than the earlier literature, we still retain predictivity, especially when the

triplet flavon vev pattern preserves a subgroup of A4.

Here we concentrate on the group A4, which is the smallest group that contains a

triplet representation. Other groups that have been utilized include O(2) and SO(2) sym-

metry [70], ∆(3n2) and ∆(6n2) [71, 72], ∆96 [73, 74], Q6 with three sterile neutrinos [75],

and product groups of modular Zn finite groups in various permutations [76–85]. Other

studies have focused on permutation symmetry S3 and S4 models [86–92]. Other mixing

scenarios beyond TBM and related patterns include democratic mixing, which has been

studied in [43, 54, 93], tetra-maximal mixing [94], and anarchic mixing [95–98].

The paper is organized as follows. In section 2, we briefly review the A4 finite group

symmetry and our type-I seesaw model implementation. In section 3, we present the results

of our parameter scan of the A4 flavor vev space. We conclude in section 4. An intermediate

step of our calculation is presented in appendix A.
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H L N eR µR τR φE φN η χ ψ

A4 1 3 3 1 1′′ 1′ 3 3 1 1′ 1′′

Z2 1 1 1 -1 -1 -1 -1 1 1 1 1

Table 1. The A4 and Z2 charge assignments of the Standard Model fields and A4 flavons.

2 The A4 model

We construct a Type I seesaw model based on an A4 flavor symmetry. We include three

right-handed neutrinos Ni, which are Standard Model gauge singlets. These neutrinos

transform as a triplet 3 under A4. We also assign the lepton SU(2) doublet L ∼ 3, charged

lepton SU(2) singlets eR ∼ 1, µR ∼ 1′′, τR ∼ 1′. To separate the charged lepton coupling

scalars from the neutrino coupling scalars, we impose a Z2 symmetry. These representations

are summarized in table 1.

The Lagrangian for the leptons is

L ⊃
(

HL̄ (λeeR + λµµR + λττR)

(

φE
Λ

)

+ λNH̃L̄N + h.c.

)

(2.1)

+ΛRRN
TN

(

cNφN + cηη + cχχ+ cψψ

Λ

)

+ c.c. ,

where φE ∼ 3, φN ∼ 3, η ∼ 1, χ ∼ 1′, and ψ ∼ 1′′ are scalar fields which acquire

vevs and break the A4 symmetry at the scale Λ, and the couplings cN , cη, cχ, and cψ are

complex. However, we absorb all phases (including Majorana phases) into cN and thus cN
is indexed to be non-universal. We will not specify here the scalar potential to give the

φE , φN , η, χ, and ψ fields vevs, but instead we leave a study of the potential construction

and vacuum alignment questions for future work. The Lagrangian includes the familiar

Dirac masses for the charged leptons, new Dirac masses for the neutrinos, and a general

A4-invariant Majorana mass matrix which includes all possible A4 contractions. Thus, in

contrast with early, pre-Daya Bay and RENO models that generated exact TBM mixing by

including only the φN ∼ (1, 1, 1)T and η flavons, we include the χ and ψ flavons and allow

φN vev to be less constrained: subcategories of our approach have also been considered

previously [59–65].

The explicit form of the resulting mass matrices for the charged leptons and neutrinos

is easily obtained from the A4 invariants, which are reviewed, for example, in ref. [24].

We assume φE acquires a vev 〈φE〉 = Λ(1, 0, 0)T , and thus after electroweak symmetry

breaking whereby the Higgs acquires a vev vh, the charged lepton mass matrix is

L̄MLe = L̄vh







λe 0 0

0 λµ 0

0 0 λτ






e , (2.2)

where e = (eR, µR, τR). The corresponding Dirac mass matrix for the neutrinos is simply
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governed by the A4 contraction of L and N , giving

λNH̃L̄N = L̄MDcN = L̄







λNvh 0 0

0 0 λNvh
0 λNvh 0






N . (2.3)

For the Majorana mass matrix, we will be more general and allow φN to obtain a

general vev pattern, cN 〈φN 〉 = Λ(φa, φb, φc). In addition, we let cη〈η〉 = Λη, and similarly

for χ and ψ, such that the vev parameters η, χ, and ψ are dimensionless and have absorbed

their respective Lagrangian couplings. We have the Majorana mass matrix

MNN
TN = ΛRRN

TN







2
3φa + η −1

3φc + ψ −1
3φb + χ

−1
3φc + ψ 2

3φb + χ −1
3φa + η

−1
3φb + χ −1

3φa + η 2
3φc + ψ






. (2.4)

It is worth noting that there is another term one could write, mRRN
TN , which sets

an additional mass scale mRR which we will designate as ΛRR. We absorb this term into

the vev of η. Since N is a gauge singlet, there is no connection between the Higgs vev

and the mass scale ΛRR. In particular, if we set ΛRR ∼ O(ΛGUT ) ≈ 1016GeV, we exercise

the seesaw mechanism to generate light neutrino masses. Moreover, we assume the A4

breaking scale Λ ∼ 0.1ΛRR to avoid tuning issues between the mass scale and the breaking

scale. The block matrix for the neutrinos in the (νL, N)T basis is

Mν =

(

0 MT
Dc

MDc MN

)

, (2.5)

which generates the effective neutrino mass matrix

Mν, eff =MDcM
−1
N MT

Dc , (2.6)

after the right-handed neutrinos have been integrated out.

Now, in exact analogy with the Cabibbo-Kobayashi-Maskawa (CKM) matrix, the

PMNS matrix arises when we express the weak charged current interactions in the lep-

ton mass basis. The PMNS matrix is

VPMNS = ULU
†
ν , (2.7)

where

Mdiag
L = ULMLU

†
L , Mdiag

ν = UνMν, effU
†
ν , (2.8)

but from eq. (2.2), UL = 13, and thus the PMNS matrix is identified with the neutrino

diagonalization matrix U †
ν . The three parameters λe, λµ, and λτ , which are each rescaled

by 〈φE〉/Λ, are in one-to-one correspondence with the three charged lepton masses and are

hence fixed.

Having identified VPMNS ≡ U †
ν , we adopt the standard parametrization of the PMNS

matrix given by

VPMNS =







1 0 0

0 c23 s23
0 −s23 c23













c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13













c12 s12 0

−s12 c12 0

0 0 1






diag(1, eiξ1 , eiξ2) , (2.9)
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where cij = cos θij , sij = sin θij , δ is the Dirac phase, ξ1 and ξ2 are the Majorana phases,

with 0 ≤ θij ≤ π/2, 0 ≤ δ, ξ1, ξ2 ≤ 2π.

We now have a solvable system of equations relating the neutrino masses, mixing

angles, and phases with the flavon vevs. From eq. (2.6), eq. (2.8), and using U †
ν = VPMNS,

we find the relation

MDcM
−1
N MT

Dc =Mν eff = U †
νM

diag
ν Uν = VPMNSM

diag
ν V †

PMNS , (2.10)

where MN is given in eq. (2.4). Solving for M−1
N and inverting, we get

MN =MT
DcVPMNS(M

diag
ν )−1V †

PMNSMDc . (2.11)

Entry by entry, we have a system of six equations that can be solved analytically, which

gives exact relations between the A4 parameter space and the physical masses and PMNS

mixing angles. This is manifestly symmetric, which is most easily seen from eq. (2.4). A

similar result using the mass entries of the Majorana mass matrix instead of the triplet

and one-dimensional flavon vevs was the starting point of [64]. Our approach, in con-

trast, directly shows the correlation between different UV triplet flavons and low energy

neutrino observables.

Naively, we have a six-dimensional UV parameter space, given by the three components

of the φN triplet flavon and each of the one-dimensional flavons. The flavon breaking

scale Λ and the Majorana mass scale are unobservable and can be absorbed into the six

flavon vev components. Now, although the triplet’s vevs can be independent degrees of

freedom, certain breaking alignments in flavon space preserve the Z2 or Z3 subgroups of

A4 and thus reduce the number of UV parameters. We will thus categorize our results

according to subgroup preserving and subgroup breaking triplet vev patterns, which are

listed in table 2. Subgroup preserving vev patterns thus effectively have a four-dimensional

parameter space, while subgroup breaking vev patterns have a six-dimensional space.

In general, there are nine physical parameters which give rise to eight physical predic-

tions: three mixing angles, three masses, and one Dirac CP phase, as well as two Majorana

phases that combine to dictate the rate of neutrinoless double β decay. We will not discuss

0ν2β further in this paper, and instead focus on the three angles, three masses, and the

Dirac CP phase. We can thus see both our subgroup preserving and subgroup breaking

categories are predictive: the four parameters in the subgroup preserving category, for

instance, are over-constrained by the existing neutrino measurements, and the existence

of a nontrivial solution reflects the suitability of the A4 finite group as a possible flavor

symmetry of the lepton sector. In addition, for both categories, the yet-to-be-discovered

Dirac CP phase is predicted from our parameter scan, which we detail in the next section.

2.1 Breaking bimaximality, analytic results

We present an analytic understanding of breaking bimaximality (i.e. deviations of θ23 from

45◦) in our general Type I seesaw A4 construction. First, we calculate the effective neutrino

mass matrix, and then analyze to the extent a θ23 = 45◦ rotation diagonalizes this matrix.

– 6 –
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Subgroup vev alignment

Z2 (1, 0, 0), (0, 1, 0), (0, 0, 1)

Z3 (−1, 1, 1), (1, 1,−1), (1,−1, 1), (1, 1, 1)

breaking (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 1,−1), (2, 1, 1), (1, 1, 2), (1, 2, 1), (1,−2, 1), (1, 1,−2), (−2, 1, 1)

Table 2. Listed vev alignments for φ that preserve a Z2 or Z3 subgroup of A4.

Starting with eq. (2.3), we write

MDc =MT
Dc = λNvh







1 0 0

0 0 1

0 1 0






, (2.12)

and we can recognize that M−1
Dc = 1

λ2
N
v2
h

MDc. Next, since Uν is the diagonalization matrix

of Mν, eff, as established in eq. (2.8), Uν is also the diagonalization matrix of M−1
ν, eff, since

(Mdiag
ν )−1 = (UνMν, effU

†
ν )

−1 = (U †
ν )

−1(Mν, eff)
−1(Uν)

−1 = Uν(Mν, eff)
−1U †

ν . (2.13)

Thus, the seesaw mass matrix in eq. (2.6) can be inverted to give

M−1
ν, eff =

1

λ4Nv
4
h

MDcMNM
T
Dc . (2.14)

Recall that because our charged lepton mass matrix in eq. (2.2) is diagonal, we have the

identity VPMNS = U †
ν , so the diagonalization matrix of Mν, eff, and by extension, M−1

ν, eff is

the PMNS matrix.

Recall that the PMNS matrix is composed of three Jacobi rotation angles, ordered as

a θ23 rotation, a θ13 rotation, and then a θ12 rotation, and the phase rotations, as we can

see from eq. (2.9). Also, recall that a Jacobi rotation operates on a 2 × 2 block of the

matrix, such as
(

a b

b c

)

, (2.15)

where the rotation angle is defined as

tan 2θ =
2b

c− a
. (2.16)

In particular, for fixed c and a, the sign of b determines the sign of θ. Moreover, we know

that a rotation matrix for a single angle α+β can be decomposed into first rotating by α and

then by β. (This, of course, does not commute with rotations about other axes.) Hence,

we can rotate M−1
ν, eff by θ23 = 45◦ and then understand deviations from bimaximality by

testing the remaining presence of off-diagonal entries in the (3, 2) and (2, 3) entries of the

effective neutrino mass matrix.

From eq. (2.3) and eq. (2.4), the r.h.s. of eq. (2.14) is

M−1
ν, eff =

1

λ2Nv
2
h







2
3φa + η −1

3φb + χ −1
3φc + ψ

−1
3φb + χ 2

3φc + ψ −1
3φa + η

−1
3φc + ψ −1

3φa + η 2
3φb + χ






, (2.17)
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which as a trivial check, is still symmetric. After we perform the θ23 = 45◦ bimaximal

rotation, we have

RTBMM
−1
ν, effRBM =







2
3φa+η

1
3
√
2
(−φb+φc)+ 1√

2
(χ−ψ) −1

3
√
2
(φb+φc)+

1√
2
(χ+ψ)

1
3
√
2
(−φb+φc)+ 1√

2
(χ−ψ) 1

3(φa+φb+φc)−η+ 1
2χ+

1
2ψ

1
3(−φb+φc)− 1

2χ+
1
2ψ

−1
3
√
2
(φb+φc)+

1√
2
(χ+ψ) 1

3(−φb+φc)− 1
2χ+

1
2ψ

1
3(−φa+φb+φc)+η+ 1

2χ+
1
2ψ






.

(2.18)

So, if 1
3(−φb+φc)− 1

2χ+
1
2ψ 6= 0, then the θ23 = 45◦ bimaximal rotation was insufficient to

eliminate the (3, 2) and (2, 3) entries and an additional θ23 rotation is needed. (In addition,

if the (2, 2) and (3, 3) entries are identical, then θ23 = 45◦ is guaranteed.) Moreover, we

see that the transformation φb ↔ φc and χ ↔ ψ changes the sign of the (3, 2) and (2, 3)

entries while leaving the (2, 2) and (3, 3) entries fixed. Hence, we can see that any viable

solution characterized by a triplet vev of (φa, φb, φc) and a particular set of η, χ, and ψ can

be transmuted to a different solution characterized by (φa, φc, φb) and η, ψ, and χ with an

opposite sign of the deviation from θ23 = 45◦.

3 Parameter scan results for subgroup preserving and subgroup breaking

triplet flavon VEVs

Since current neutrino experiments do not have sensitivity to individual neutrino masses,

we constrain the low energy neutrino observables by fitting to three mixing angles, two

∆m2, and the cosmological constraint on the sum of absolute neutrino masses. Clearly,

the remaining parameter space for δ is the predictive relation from our parameter scan.

(As stated before, we do not discuss the sensitivity to the Majorana phases from neutrino-

less double β decay experiments.) We first take the system of equations in eq. (2.11) and

solve for the A4 breaking vevs in terms of the neutrino observables. These solutions are

presented in appendix A. Since we want to work from the top-down, however, we partially

invert the system to solve for the neutrino masses and the A4 singlet vevs in terms of the

A4 triplet vev and the neutrino mixing angles and the CP phase. We obtain

mi =
v2h
ΛRR

(aibjckǫijk)(φab
kcjǫijk + φba

jckǫijk + φca
kbjǫijk)

−1 , (3.1)

where m1,m2, m3 are the three light neutrino masses, i, j, k = 1, 2, 3, and ǫijk is the

Levi-Civita tensor. The three-component vectors ~a, ~b, ~c are found in table 3.

This partial inversion is advantageous because, using the measured mixing angles,

we can test individual A4 triplet vevs and determine the fit to the correct mass squared

differences and the cosmological constraint. We reparametrize the mass squared difference

constraints into a ratio ∆21/∆31, where ∆ij ≡ m2
i −m2

j and use the dimensionless ratio

to constrain the dimensionless vevs in eq. (3.1). The mass scale v2h/ΛRR is then fixed by

matching either of the measured mass squared differences.

In line with our top-down approach and intuition about the A4 finite group, we attempt

to preserve many of the symmetries present in the case of TBM mixing. Yet, simply
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a1
[

c212c
2
13−

(

s12s23−e−iδc12c23s13
) (

−c23s12−eiδc12s13s23
)]

a2 e−i2ξ1
[

c213s
2
12+

(

c12s23+e
−iδc23s12s13

) (

c12c23−eiδs12s13s23
)]

a3 e−i2ξ2(s213−c213c23s23)

b1
[(

s12s23−e−iδc12c23s13
) (

s12s23−eiδc12c23s13
)

+ c12c13
(

c23s12+e
−iδc12s13s23

)]

b2 e−i2ξ1
[(

c12s23+e
−iδc23s12s13

) (

c12s23+e
iδc23s12s13

)

− c13s12
(

c12c23−e−iδs12s13s23
)]

b3 e−i2ξ2(c213c
2
23−e−iδc13s13s23)

c1
[

c12c13
(

−s12s23+e−iδc12c23s13
)

+
(

c23s12+e
iδc12s13s23

) (

c23s12+e
−iδc12s13s23

)]

c2 e−i2ξ1
[

c13s12
(

c12s23+e
−iδc23s12s13

)

+
(

c12c23−eiδs12s13s23
) (

c12c23−e−iδs12s13s23
)]

c3 e−i2ξ2(c213s
2
23−e−iδc13c23s13)

Table 3. The explicit components of ~a, ~b, ~c as function of mixing angles and the triplet φ.

relaxing sin2 θ13 = 0 while simultaneously keeping the other TBM mixing angle relations

did not lead to viable solutions without perturbing the triplet vev alignment. We therefore

choose to relax the bimaximal relation sin2 θ23 = 1
2 and maintain the trimaximal relation

sin2 θ12 = 1
3 . In this way, we can understand a larger region of A4 parameter space since

the experimental bounds on θ12 are tighter than those on θ23. Given this fixed θ12, we then

choose each of the Dirac and Majorana phases to be 0 or π for each triplet vev pattern.

However, this process itself is not entirely trivial, as not all choices are independent.

Up to field re-phasing, there are four transformations about bimaximal mixing in which

components of eq. (3.1) transform antisymmetrically. Under the interchange of θ23 =

45◦ + x↔ θ23 = 45◦ − x and any of the four,

δ = 0, ξ1 = 0, ξ2 = 0 ↔ δ = π, ξ1 = π, ξ2 = π (3.2)

δ = 0, ξ1 = π, ξ2 = 0 ↔ δ = π, ξ1 = π, ξ2 = 0

δ = 0, ξ1 = 0, ξ2 = π ↔ δ = π, ξ1 = 0, ξ2 = π

δ = 0, ξ1 = π, ξ2 = π ↔ δ = π, ξ1 = 0, ξ2 = 0 ,

we find

~a · (~b× ~c) ↔ −~a · (~b× ~c) (3.3)

~b× ~c↔ ~c×~b
~a×~b↔ ~a× ~c .

It immediately follows that the existence of one solution implies there is a corresponding

solution with different phases (and a possibly different triplet alignment) which is related

under these transformations. What remains to be specified are the angles θ23 and θ13,

which we scan over the 2σ θ23 range of [12] and over the 2σ θ13 experimental bounds from

Daya Bay in ref. [1] . We draw contours in this two-dimensional plane that satisfy the

measured mass squared differences from [12] and we constrain the ratio of ∆m2 within

2σ uncertainties as dictated by the predicted neutrino hierarchy and set the individual
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Figure 1. Contour plots of ∆21/∆31 over the 2σ regions of θ23 and θ13 for subgroup preserving

triplet vev patterns that generate (left panel) a normal hierarchy and (right panel) an inverted

hierarchy. For normal hierarchies, we find the (1, 0, 0) pattern stays close to the central angle of

θ23, while the the (1,−1, 1) and (1, 1,−1) patterns avoid the central value. The inverted hierarchy

solutions, however, only deviate from the maximal angle of θ23 by values of order O(0.1◦).

neutrino mass scale using ΛRR. From the existence of matter effects in solar neutrino

oscillation, we know that ∆21 > 0. So by enforcing this constrain upon the ratio there

is a unique positive value and negative value for ∆21/∆31 that correspond to a normal or

inverted neutrino mass hierarchy respectively. We then require the contours to satisfy the
∑

i

|mνi | < 0.81 eV [99]. Because degenerate neutrino spectra lead to numerically unstable

results, we discard possible solutions arising from degenerate neutrino spectra.

3.1 Numerical results

These results are shown in the left panel of figure 1 for subgroup preserving triplet vev

patterns from table 2 that generate a normal hierarchy, while the right panel shows the sub-

group preserving patterns that generate an inverted hierarchy. These figures clearly show

the correlations between the deviation from the bimaximal θ23 and nonzero θ13. Patterns

that have such solutions are now uniquely determined and predict a very specific combina-

tion of masses and the CP phase. A notably absent alignment is the (1,1,1) breaking pat-

tern, often associated with TBM mixing. We can understand this by considering eq. (2.14)

and asserting φa = φb = φc. We find

f(θ12, θ13, θ23)(m2 −m3) = 0 , (3.4)

and so unless the function f is zero, the masses m2 and m3 are required to be degenerate

and this vev is not a viable phenomenological alignment. Under exact TBM mixing, f is

zero and the masses are free.

We also show the corresponding parameter scans for subgroup breaking triplet vev

patterns that give normal hierarchies in the left panel of figure 2 and inverted hierarchies

in the right panel. Although the parameter space is less predictive, we can nevertheless

see that a normal hierarchy requires significant breaking of bimaximality, while an inverted

hierarchy still allows for a bimaximal θ23 for some vev patterns.
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Figure 2. Contour plots of ∆21/∆31 over the 2σ regions of θ23 and θ13 for subgroup breaking

triplet vev patterns that generate (left panel) a normal hierarchy and (right panel) an inverted

hierarchy. The normal hierarchy solutions characteristically avoid the central value of θ23. Like

the subgroup preserving vev patterns, here the inverted hierarchy solutions feature little deviations

from the central value of θ23.

For each successful triplet vev pattern and phase choice, we list the θ23 value and

neutrino mass spectrum corresponding to the central value for θ13 from the Daya Bay

collaboration [1] in table 4.

The vev alignments (1, 0, 0) and the permutations of (−1, 1, 1) comprising the first and

second sets of solutions shown in table 4 are vevs preserving the Z3 and Z2 subgroups,

respectively. The remaining vev alignments break A4 completely. Each vev alignment can

produce some deviation from θ23 = π/4, and most notably, non-Z3 preserving alignments

can produce significant breaking of bimaximality where TBM cannot be approximate.

Generally, we find that inverted hierarchies feature deviations from θ23 from the TBM

case of order O(0.1◦), while normal hierarchies favor deviations an order of magnitude

larger. For a given choice of Dirac CP phase, we find that most breaking patterns are

relatively insensitive to changes in θ13 with the current experimental bounds. We also

highlight the fact that many simple A4 triplet vev possibilities are excluded by the current

experimental data. In particular, arbitrary triplet vev patterns in general will not generate

the small hierarchy in experimental mass squared differences, and those that do are highly

predictive about the extent of bimaximal breaking.

We can semi-analytically see why the normal hierarchy solutions deviate more strongly

from bimaximality than the inverted hierarchy solutions. In general, for fixed θ12 and θ13,

we can consider a Taylor expansion of the neutrino masses around z ≡ θ23 − 45◦,

m1 = x1 + y1z + . . . , (3.5)

m2 = x2 + y2z + . . . ,

m3 = x3 + y3z + . . . ,

where x1,2,3 and y1,2,3 are the zeroth and first order coefficients. Using this expansion,

we have

∆21 = m2
2 −m2

1 ≈ x22 − x21 + 2(x2y2 − x1y1)z +O(z2) . (3.6)
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(φν

a, φ
ν

b , φ
ν

c ) mass hierarchy (ξ1, ξ2, δ, θ23 − 45◦) (m1,m2,m3)

(1, 0, 0) N (0, 0, π,−0.3◦); (π, π, 0, 0.3◦) (0.0447, 0.0455,−0.0667)

(1, 0, 0) I (π, 0, 0,−0.05◦); (π, 0, π, 0.05◦) (0.0618,−0.0624, 0.0370)

(1, 0, 0) I (0, 0, 0,−0.05◦); (π, π, π, 0.05◦) (0.0630, 0.0636,−0.0390)

(−1, 1, 1) I (0, 0, π,−0.03◦); (π, π, 0, 0.03◦) (−0.0496,−0.0504, 0.0035)

(1,−1, 1) N (0, 0, 0,−6.6◦); (π, π, π, 6.6◦) (0.0078,−0.0117,−0.0501)

(1, 1,−1) N (π, π, 0,−4.8◦); (0, 0, π, 4.8◦) (0.0032,−0.0093, 0.0496)

(0, 1, 1) I (π, π, π,−0.1◦); (0, 0, 0, 0.1◦) (0.0522, 0.0530, 0.0167)

(0, 1, 1) I (π, π, 0,−0.2◦); (0, 0, π, 0.2◦) (0.0522, 0.0530, 0.0167)

(2, 1, 1) N (0, 0, 0,−3.8◦); (π, π, π, 3.8◦) (0.0092, 0.0127, 0.0503)

(2, 1, 1) N (0, 0, π,−3.6◦); (π, π, 0, 3.6◦) (0.0210, 0.0227, 0.0538)

(−2, 1, 1) I (π, π, π,−0.02◦); (0, 0, 0, 0.02◦) (−0.0498,−0.0506, 0.0055)

(−2, 1, 1) I (0, 0, π,−0.1◦); (π, π, 0, 0.1◦) (−0.0523,−0.0530, 0.0168)

(0, 1,−1) N (π, π, 0,−5.4◦); (0, 0, π, 5.4◦) (0.0213,−0.0230, 0.0539)

(0, 1,−1) N (π, π, π,−7◦); (0, 0, 0, 7◦) (−0.0282, 0.0295,−0.0570)

(1, 0, 1); (1, 1, 0) N (π, 0, 0,−4.4◦); (π, 0, π, 4.4◦) (0.0073, 0.0114,−0.0500)

(1, 2, 1); (1, 1, 2) N (0, π, π,−4.4◦); (0, π, 0, 4.4◦) (0.0572,−0.0578,−0.0756)

(1,−2, 1); (1, 1,−2) N (π, π, 0,−4.2◦); (0, 0, π, 4.2◦) (0.0074,−0.0114,−0.0500)

Table 4. The collection of vev alignments considered in our parameter scan, resulting hierarchy,

phases, deviation from bimaximality, and neutrino masses. The mass hierarchy column indicates

whether the vev generates a normal (N) hierarchy or inverted (I) hierarchy. The last two columns

indicate the required phases to obtain a valid mass hierarchy and the θ23 angle and neutrino masses

corresponding to the central θ13 value from Daya Bay [1].

A complete expression of this mass squared difference for the central values of θ12 and θ13
and arbitrary triplet vev is not useful, but if we consider the special case of φb = φc, we

generally find x1 = x2 and y1 = −y2, giving

∆21 ≈ 4x2y2z +O(z2) . (3.7)

Furthermore, if we consider the behavior of the expansion coefficients x1 and y1 for normal

hierarchy solutions versus related inverted hierarchy solutions, we find x
(N)
1 ≈ x

(I)
1 and

4y
(N)
1 ≈ y

(I)
1 : from the ∆21 constraint, we see

z(N) ≈ 4z(I) , (3.8)

which implies that the resulting deviation from bimaximality is much larger for normal hi-

erarchies compared to inverted hierarchies. When exact expressions are used, the difference

can be as big as an order of magnitude, as evident in the figures.

3.2 Dirac CP phase predictions

We now examine the predicted Dirac CP phase for various triplet vev patterns. Instead of

fixing δ and scanning over θ23 and θ13 as before, we now set θ23 to the value preferred by
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Figure 3. Contours for various A4 breaking patterns at their respective favored θ23 angle based

on table 4. The (1, 1,−1) and (1, 1,−2) patterns show the ratio contour for a normal mass hierarchy,

while the (−1, 1, 1) and (0, 1, 1) show the ratio for an inverted mass hierarchy. The (1, 1,−1),

(−1, 1, 1), and (0, 1, 1) vevs are moderately more predictive of δ than the (−1, 1, 1) vev.

the central θ13 value of Daya Bay [1], as shown in table 4, and scan this θ23 slice of the δ vs.

θ13 plane. Contours that satisfy the correct mass squared differences are highlighted and

shown in figure 3 for a few illustrative choices of vev patterns. Thus, for θ13 within the 2σ

range of [1], the favored range of δ can be broad, as for the (1, 1,−2) vev, or fairly narrow,

as for the (1, 1,−1), (−1, 1, 1) and (0, 1, 1) vevs. This figure shows that a measurement of δ

and further refinement in narrowing the θ13 uncertainties can exclude or significantly favor

a particular set of A4 vev patterns. In addition, we see that shifts in the central value of

θ13 will serve to disfavor particular vev patterns as well as better accommodate other vev

patterns. Certainly, more data is needed to test these possibilities and the A4 paradigm.

4 Conclusions

In light of the results from the Daya Bay and RENO collaborations, we have developed a

framework for understanding the constraints on the A4 parameter space from low energy

neutrino observables. For our parameter scan, we have assumed a Type I seesaw model with

a minimal A4 flavor structure governing the charged lepton masses and the Dirac neutrino

masses, but the Majorana mass matrix has contributions from each of the possible 3, 1,

1′, and 1′′ flavons, where the triplet vev pattern is initially unconstrained. We categorize
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the triplet vev according to Z3 or Z2 subgroup preserving patterns, which enhances the

model predictivity: for these subgroup preserving patterns, four A4 parameters are used

to predict seven neutrino observables. Regarding the chosen vev patterns, we leave the

question of scalar potentials or vacuum alignment for future work.

We have analyzed the A4 parameter space in two distinct and intriguing slices. In the

first case, we fix θ12 to be trimaximal and scan over the resulting θ23 vs. θ13 plane for

various choices of Dirac and Majorana phases. The results show that vev patterns giving

a normal neutrino mass hierarchy have moderately large breaking of bimaximality for θ23,

while inverted hierarchies generally retain bimaximality as a prediction. This indicates that

a non-bimaximal θ23 measurement, such as the preliminary result sin2(2θ23) = 0.94+0.04
−0.05

from MINOS [100] is favorably correlated with a normal hierarchy in our A4 framework.

We also analyzed the predictions for the Dirac CP phase δ for some illustrative choices of

triplet vev pattern in the δ vs. θ13 plane. This analysis emphasizes the point that a future

measurement of δ, decreased uncertainty in θ13, and shifts in the central value of θ13 can

strongly favor or exclude particular triplet vev patterns, highlighting the fact that future

experimental results have significant power in discriminating possible A4 flavon structures.
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A General VEV solutions of flavon fields

In eq. (2.11), we have six equations that relate the A4 flavons comprising the Majorana

mass matrix to the low energy neutrino masses, mixing angles, and phases. We can solve

this system to express the triplet flavon components, (φa, φb, φc)
T , and the one-dimensional

flavons, η, χ, and ψ, in terms of the physical neutrino observables. This solution set is

〈φa〉 = F

(

1

m1

[

c212c
2
13 −

(

s12s23 − e−iδc12c23s13
)(

−c23s12 − eiδc12s13s23

)]

+
1

m2
e−i2ξ1

[

c213s
2
12 +

(

c12s23 + e−iδc23s12s13
)(

c12c23 − eiδs12s13s23

)]

+
1

m3
e−i2ξ2(s213 − c213c23s23)

)

, (A.1)
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〈φb〉 = F

(

1

m1

[ (

s12s23 − e−iδc12c23s13
)(

s12s23 − eiδc12c23s13

)

+ c12c13

(

c23s12 + e−iδc12s13s23
) ]

+
1

m2
e−i2ξ1

[ (

c12s23 + e−iδc23s12s13
)(

c12s23 + eiδc23s12s13

)

− c13s12

(

c12c23 − e−iδs12s13s23
) ]

+
1

m3
e−i2ξ2(c213c

2
23 − e−iδc13s13s23)

)

, (A.2)

〈φc〉 = F

(

1

m1

[

c12c13

(

−s12s23 + e−iδc12c23s13
)

+
(

c23s12 + eiδc12s13s23

)(

c23s12 + e−iδc12s13s23
) ]

+
1

m2
e−i2ξ1

[

c13s12

(

c12s23 + e−iδc23s12s13
)

+
(

c12c23 − eiδs12s13s23

)(

c12c23 − e−iδs12s13s23
) ]

+
1

m3
e−i2ξ2(c213s

2
23 − e−iδc13c23s13)

)

, (A.3)

〈η〉 = F

3

(

1

m1
[c212c

2
13 + 2(−s212s23c23 + c212s

2
13s23c23 + e−iδc12s12s13c

2
23 − eiδc12s12s13s

2
23)]

+
1

m2
e−i2ξ1 [c213s

2
12 − 2c212c23s23 − 2c12s12s13(e

−iδc223 − eiδs223) + 2s212s
2
13s23c23]

+
1

m3
e−i2ξ2(s213 + 2c213c23s23)

)

, (A.4)

〈ψ〉 = F

3

(

1

m1
[c223s

2
12 − c12c23s13(2e

−iδc12c13 − (e−iδ + eiδ)s12s23)

+ s23(2c13s12c12 + c212s
2
13s23)]

+
1

m2
e−i2ξ1 [c212c

2
23 − (e−iδ + eiδ)c12c23s12s13s23 − s12(2e

−iδc23s12s13c13

+ s23(2c12c13 − s12s
2
13s23))]

+
1

m3
e−i2ξ2 [c13(2e

−iδc23s13 + eiδc13s23)]

)

, (A.5)

〈χ〉 = F

3

(

1

m1
[−2c13c23s12c12 − (e−iδ + eiδ)c12c23s12s13s23 + s212s

2
23

− c212(−c223s213 + 2e−iδs13c13s23)]

+
1

m2
e−i2ξ1 [c212s

2
23 + s212s13(c

2
23s13 − 2e−iδc13s23)

+ c12c23s12(2c13 + (e−iδ + eiδ)s13s23)]

+
1

m3
e−i2ξ2 [c13(c13c

2
23 + 2e−iδs13s23)]

)

, (A.6)
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where F =
v2
H
λ2
N

ΛRR
. We invert eq. (A.1), eq. (A.2), and eq. (A.3) to solve for the neutrino

masses in terms of the triplet vev components (φa, φb, φc)
T . Then, we constrain the one-

dimensional flavons and the neutrino masses by assuming a particular triplet vev pattern

and scanning over the mixing angles and phases, applying the constraint on mass squared

differences from [12] and the cosmological bound on the sum of absolute neutrino masses

from [14].
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