3,618 research outputs found

    NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist

    Get PDF
    Tables of ^1H and ^(13)C NMR chemical shifts have been compiled for common organic compounds often used as reagents or found as products or contaminants in deuterated organic solvents. Building upon the work of Gottlieb, Kotlyar, and Nudelman in the Journal of Organic Chemistry, signals for common impurities are now reported in additional NMR solvents (tetrahydrofuran-d_8, toluene-d_8, dichloromethane-d_2, chlorobenzene-d_5, and 2,2,2-trifluoroethanol-d_3) which are frequently used in organometallic laboratories. Chemical shifts for other organics which are often used as reagents or internal standards or are found as products in organometallic chemistry are also reported for all the listed solvents

    Pediatric medication use experiences and patient counseling in community pharmacies: Perspectives of children and parents

    Get PDF
    AbstractObjectivesThis study aimed to explore the perspectives of children and parents regarding: 1) pediatric patients' knowledge and medication use experiences for chronic conditions; 2) how they want to learn about medicines; and 3) perceptions of community pharmacist–provided counseling.DesignQualitative study using semistructured interviews and thematic analyses.SettingThree community pharmacies in 2 eastern states: one in rural western North Carolina, and 2 in an urban region of western Pennsylvania.ParticipantsA total of 39 study participants: 20 children using medications for chronic conditions and 19 parents interviewed July-December 2015.Main outcome measuresChild and parent perspectives regarding pediatric medication use, knowledge, experiences, and pharmacist-provided patient counseling.ResultsChildren and parents had similar perspectives on pediatric medication use and pharmacist counseling experiences. Six themes emerged: 1) child's knowledge, self-management, and medication use experiences; 2) essential medication information and sources; 3) child's frequent absence from the pharmacy; 4) patient counseling needs and recommendations; 5) use of interactive technologies to facilitate learning about medicines; and 6) perceptions of pharmacists. Participants reported that children were independently managing their medications, although they had minimal knowledge about medicines. Children and parents stated that the child's absence during medication pick-up at pharmacies was a barrier to receiving counseling by pharmacists. Children were comfortable and receptive to pharmacists educating them about their medicines, particularly how medications affect the human body, how they were manufactured, and research studies on their medications. Parents and children recommended the use of interactive and educational technologies for pediatric counseling.ConclusionChildren are frequently not present at pharmacies during prescription pick-up; however, children and parents are comfortable with and receptive to pediatric medication counseling by pharmacists. Interactive and educational technologies need to be developed and used by pharmacists to facilitate counseling and educate children about the effective and safe use of medicines

    Measuring the Size of Quasar Broad-Line Clouds Through Time Delay Light-Curve Anomalies of Gravitational Lenses

    Full text link
    Intensive monitoring campaigns have recently attempted to measure the time delays between multiple images of gravitational lenses. Some of the resulting light-curves show puzzling low-level, rapid variability which is unique to individual images, superimposed on top of (and concurrent with) longer time-scale intrinsic quasar variations which repeat in all images. We demonstrate that both the amplitude and variability time-scale of the rapid light-curve anomalies, as well as the correlation observed between intrinsic and microlensed variability, are naturally explained by stellar microlensing of a smooth accretion disk which is occulted by optically-thick broad-line clouds. The rapid time-scale is caused by the high velocities of the clouds (~5x10^3 km/s), and the low amplitude results from the large number of clouds covering the magnified or demagnified parts of the disk. The observed amplitudes of variations in specific lenses implies that the number of broad-line clouds that cover ~10% of the quasar sky is ~10^5 per 4 pi steradian. This is comparable to the expected number of broad line clouds in models where the clouds originate from bloated stars.Comment: 19 pages, 9 figures. Submitted to Ap

    Dengue Virus-Induced Inflammation of the Endothelium and the Potential Roles of Sphingosine Kinase-1 and MicroRNAs

    Get PDF
    Copyright © 2015 Amanda L. Aloia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection

    Bridging frustrated-spin-chain and spin-ladder physics: quasi-one-dimensional magnetism of BiCu2PO6

    Get PDF
    We derive and investigate the microscopic model of the quantum magnet BiCu2PO6 using band structure calculations, magnetic susceptibility and high-field magnetization measurements, as well as ED and DMRG techniques. The resulting quasi-one-dimensional spin model is a two-leg AFM ladder with frustrating next-nearest-neighbor couplings along the legs. The individual couplings are estimated from band structure calculations and by fitting the magnetic susceptibility with theoretical predictions, obtained using ED. The nearest-neighbor leg coupling J1, the rung coupling J4, and one of the next-nearest-neighbor couplings J2 amount to 120-150 K, while the second next-nearest-neighbor coupling is J2'~J2/2. The spin ladders do not match the structural chains, and although the next-nearest-neighbor interactions J2 and J2' have very similar superexchange pathways, they differ substantially in magnitude due to a tiny difference in the O-O distances and in the arrangement of non-magnetic PO4 tetrahedra. An extensive ED study of the proposed model provides the low-energy excitation spectrum and shows that the system is in the strong rung coupling regime. The strong frustration by the next-nearest-neighbor couplings leads to a triplon branch with an incommensurate minimum. This is further corroborated by a strong-coupling expansion up to second order in the inter-rung coupling. Based on high-field magnetization measurements, we estimate the spin gap of 32 K and suggest the likely presence of antisymmetric DM anisotropy and inter-ladder coupling J3. We also provide a tentative description of the physics of BiCu2PO6 in magnetic field, in the light of the low-energy excitation spectra and numerical calculations based on ED and DMRG. In particular, we raise the possibility for a rich interplay between one- and two-component Luttinger liquid phases and a magnetization plateau at 1/2 of the saturation value

    Lagrangian and Hamiltonian two-scale reduction

    Get PDF
    Studying high-dimensional Hamiltonian systems with microstructure, it is an important and challenging problem to identify reduced macroscopic models that describe some effective dynamics on large spatial and temporal scales. This paper concerns the question how reasonable macroscopic Lagrangian and Hamiltonian structures can by derived from the microscopic system. In the first part we develop a general approach to this problem by considering non-canonical Hamiltonian structures on the tangent bundle. This approach can be applied to all Hamiltonian lattices (or Hamiltonian PDEs) and involves three building blocks: (i) the embedding of the microscopic system, (ii) an invertible two-scale transformation that encodes the underlying scaling of space and time, (iii) an elementary model reduction that is based on a Principle of Consistent Expansions. In the second part we exemplify the reduction approach and derive various reduced PDE models for the atomic chain. The reduced equations are either related to long wave-length motion or describe the macroscopic modulation of an oscillatory microstructure.Comment: 40 page

    Analysis of measurement errors for a superconducting phase qubit

    Full text link
    We analyze several mechanisms leading to errors in a course of measurement of a superconducting flux-biased phase qubit. Insufficiently long measurement pulse may lead to nonadiabatic transitions between qubit states 1>|1> and 0>|0>, before tunneling through a reduced barrier is supposed to distinguish the qubit states. Finite (though large) ratio of tunneling rates for these states leads to incomplete discrimination between 1>|1> and 0>|0>. Insufficiently fast energy relaxation after the tunneling of state 1>|1> may cause the repopulation of the quantum well in which only the state 0>|0> is supposed to remain. We analyze these types of measurement errors using analytical approaches as well as numerical solution of the time-dependent Schr\"{o}dinger equation.Comment: 14 pages, 14 figure
    corecore