28 research outputs found

    Why macroscopic quantum tunnelling in Josephson junctions differs from tunnelling of a quantum particle

    Full text link
    We show that the macroscopic quantum tunnelling of a fluxon in a Josephson junction cannot be described, even qualitatively, as the tunnelling of a quantum particle in a potential U(), where the phase difference plays the role of particle position, if the length of the junction d exceeds a fluxon length. We calculate the probability per unit time of tunnelling (or escape rate), Γ, which has a form Γ=A exp(-B). In contrast to particles, where the B is proportional to d, our field-theory predicts a different behavior of B for either usual, 0–π, or stacks of Josephson junctions, giving rise to a renormalization of Γ by many orders of magnitude.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58116/2/epl_80_1_17009.pd

    Current induced decomposition of Abrikosov vortices in p-n layered superconductors and heterostructures

    Get PDF
    We describe the decomposition of Abrikosov vortices into decoupled pancake vortices in superconductors having both electron and hole charge carriers. We estimate the critical current of such a decomposition, at which a superconducting-normal state transition occurs, and find that it is very sensitive to the magnetic field and temperature. The effect can be observed in recently synthesized self-doped high-Tc layered superconductors with electrons and holes coexisting in different Cu-O planes and in artificial p-n superconductor heterostructures. The sensitivity of the critical current to a magnetic field may be used for sensors and detectors of a magnetic field, which can be built up from the superconductor heterostructures

    Asymmetric long Josephson junction acting as a ratchet for a quantum field

    Get PDF
    We study the escape rate of flux quanta in a long Josephson junction having an asymmetric spatial inhomogeneous critical current density. Such a junction can behave as a ratchet when driven by an ac current in the presence of a magnetic field. This rectification gives rise to a dc voltage Vdc across the junction. The usual approach of particlelike tunneling cannot describe this rectification, and a quantum field theory description is required. We also show that, under specific conditions, the rectification direction, and consequently Vdc, can change its sign when varying the temperature T near the crossover temperature T* between the quantum and classical regimes

    Experimentally realizable devices for domain wall motion control

    Full text link
    Magnetic domain walls (MDWs) can move when driven by an applied magnetic field. This motion is important for numerous devices, including magnetic recording read/write heads, transformers and magnetic sensors. A magnetic film, with a sawtooth profile, localizes MDWs in discrete positions at the narrowest parts of the film. We propose a controllable way to move these domain walls between these discrete locations by applying magnetic field pulses. In our proposal, each applied magnetic pulse can produce an increment or step-motion for an MDW. This could be used as a shift register. A similarly patterned magnetic film attached to a large magnetic element at one end of the film operates as an XOR logic gate. The asymmetric sawtooth profile can be used as a ratchet resulting in either oscillating or running MDW motion, when driven by an ac magnetic field. Near a threshold drive (bistable point) separating these two dynamical regimes (oscillating and running MDW), a weak signal encoded in very weak oscillations of the external magnetic field drastically changes the velocity spectrum, greatly amplifying the mixing harmonics. This effect can be used either to amplify or shift the frequency of a weak signal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49053/2/njp5_1_082.pd

    Nonuniform self-organized dynamical states in superconductors with periodic pinning

    Get PDF
    We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and nonstationary) two-dimensional dynamical structures

    Controlling Josephson dynamics by strong microwave fields

    Get PDF
    We observe several sharp changes in the slope of the current-voltage characteristics CVCs of thin-film ramp-edge Josephson junctions between YBa2Cu3O7− and Nb when applying strong microwave fields. Such behavior indicates an intriguing Josephson dynamics associated with the switching from a parametric excitation regime induced by the magnetic field of the microwave via oscillations of the Josephson critical current to an ac-current-excitation regime triggered by the electric field of the microwave. We propose a model, which describes the observed features on the CVC in terms of microwave-induced multiple switching between running and locked solutions of sine-Gordon equation

    Nonuniform Self-Organized Dynamical States in Superconductors with Periodic Pinning

    Get PDF
    We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and non-stationary) two-dimensional dynamical structures.Comment: 4 pages, 2 figure

    Negative differential resistivity in superconductors with periodic arrays of pinning sites

    Full text link
    We study theoretically the effects of heating on the magnetic flux moving in superconductors with a periodic array of pinning sites (PAPS). The voltage-current characteristic (VI-curve) of superconductors with a PAPS includes a region with negative differential resistivity (NDR) of S-type (i.e., S-shaped VI-curve), while the heating of the superconductor by moving flux lines produces NDR of N-type (i.e., with an N-shaped VI-curve). We analyze the instability of the uniform flux flow corresponding to different parts of the VI-curve with NDR. Especially, we focus on the appearance of the filamentary instability that corresponds to an S-type NDR, which is extremely unusual for superconductors. We argue that the simultaneous existence of NDR of both N- and S-type gives rise to the appearance of self-organized two-dimensional dynamical structures in the flux flow mode. We study the effect of the pinning site positional disorder on the NDR and show that moderate disorder does not change the predicted results, while strong disorder completely suppresses the S-type NDR.Comment: 10 pages, 1 table, 7 figure

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Upper limit map of a background of gravitational waves

    Get PDF
    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the closest low-mass X-ray binary. We compare the upper limit on strain amplitude obtained by this method to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table
    corecore