28 research outputs found
Why macroscopic quantum tunnelling in Josephson junctions differs from tunnelling of a quantum particle
We show that the macroscopic quantum tunnelling of a fluxon in a Josephson junction cannot be described, even qualitatively, as the tunnelling of a quantum particle in a potential U(), where the phase difference plays the role of particle position, if the length of the junction d exceeds a fluxon length. We calculate the probability per unit time of tunnelling (or escape rate), Γ, which has a form Γ=A exp(-B). In contrast to particles, where the B is proportional to d, our field-theory predicts a different behavior of B for either usual, 0–π, or stacks of Josephson junctions, giving rise to a renormalization of Γ by many orders of magnitude.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58116/2/epl_80_1_17009.pd
Current induced decomposition of Abrikosov vortices in p-n layered superconductors and heterostructures
We describe the decomposition of Abrikosov vortices into decoupled pancake vortices in superconductors having both electron and hole charge carriers. We estimate the critical current of such a decomposition, at which a superconducting-normal state transition occurs, and find that it is very sensitive to the magnetic field and temperature. The effect can be observed in recently synthesized self-doped high-Tc layered superconductors with electrons and holes coexisting in different Cu-O planes and in artificial p-n superconductor heterostructures. The sensitivity of the critical current to a magnetic field may be used for sensors and detectors of a magnetic field, which can be built up from the superconductor heterostructures
Asymmetric long Josephson junction acting as a ratchet for a quantum field
We study the escape rate of flux quanta in a long Josephson junction having an asymmetric spatial inhomogeneous critical current density. Such a junction can behave as a ratchet when driven by an ac current in the presence of a magnetic field. This rectification gives rise to a dc voltage Vdc across the junction. The usual approach of particlelike tunneling cannot describe this rectification, and a quantum field theory description is required. We also show that, under specific conditions, the rectification direction, and consequently Vdc, can change its sign when varying the temperature T near the crossover temperature T* between the quantum and classical regimes
Experimentally realizable devices for domain wall motion control
Magnetic domain walls (MDWs) can move when driven by an applied magnetic field. This motion is important for numerous devices, including magnetic recording read/write heads, transformers and magnetic sensors. A magnetic film, with a sawtooth profile, localizes MDWs in discrete positions at the narrowest parts of the film. We propose a controllable way to move these domain walls between these discrete locations by applying magnetic field pulses. In our proposal, each applied magnetic pulse can produce an increment or step-motion for an MDW. This could be used as a shift register. A similarly patterned magnetic film attached to a large magnetic element at one end of the film operates as an XOR logic gate. The asymmetric sawtooth profile can be used as a ratchet resulting in either oscillating or running MDW motion, when driven by an ac magnetic field. Near a threshold drive (bistable point) separating these two dynamical regimes (oscillating and running MDW), a weak signal encoded in very weak oscillations of the external magnetic field drastically changes the velocity spectrum, greatly amplifying the mixing harmonics. This effect can be used either to amplify or shift the frequency of a weak signal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49053/2/njp5_1_082.pd
Nonuniform self-organized dynamical states in superconductors with periodic pinning
We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and nonstationary) two-dimensional dynamical structures
Controlling Josephson dynamics by strong microwave fields
We observe several sharp changes in the slope of the current-voltage characteristics CVCs of thin-film
ramp-edge Josephson junctions between YBa2Cu3O7− and Nb when applying strong microwave fields. Such
behavior indicates an intriguing Josephson dynamics associated with the switching from a parametric excitation
regime induced by the magnetic field of the microwave via oscillations of the Josephson critical current to
an ac-current-excitation regime triggered by the electric field of the microwave. We propose a model, which
describes the observed features on the CVC in terms of microwave-induced multiple switching between
running and locked solutions of sine-Gordon equation
Nonuniform Self-Organized Dynamical States in Superconductors with Periodic Pinning
We consider magnetic flux moving in superconductors with periodic pinning
arrays. We show that sample heating by moving vortices produces negative
differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in
the voltage-current characteristic (VI curve). The uniform flux flow state is
unstable in the NDR region of the VI curve. Domain structures appear during the
NDR part of the VI curve of an N type, while a filamentary instability is
observed for the NDR of an S type. The simultaneous existence of the NDR of
both types gives rise to the appearance of striking self-organized (both
stationary and non-stationary) two-dimensional dynamical structures.Comment: 4 pages, 2 figure
Negative differential resistivity in superconductors with periodic arrays of pinning sites
We study theoretically the effects of heating on the magnetic flux moving in
superconductors with a periodic array of pinning sites (PAPS). The
voltage-current characteristic (VI-curve) of superconductors with a PAPS
includes a region with negative differential resistivity (NDR) of S-type (i.e.,
S-shaped VI-curve), while the heating of the superconductor by moving flux
lines produces NDR of N-type (i.e., with an N-shaped VI-curve). We analyze the
instability of the uniform flux flow corresponding to different parts of the
VI-curve with NDR. Especially, we focus on the appearance of the filamentary
instability that corresponds to an S-type NDR, which is extremely unusual for
superconductors. We argue that the simultaneous existence of NDR of both N- and
S-type gives rise to the appearance of self-organized two-dimensional dynamical
structures in the flux flow mode. We study the effect of the pinning site
positional disorder on the NDR and show that moderate disorder does not change
the predicted results, while strong disorder completely suppresses the S-type
NDR.Comment: 10 pages, 1 table, 7 figure
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Upper limit map of a background of gravitational waves
We searched for an anisotropic background of gravitational waves using data
from the LIGO S4 science run and a method that is optimized for point sources.
This is appropriate if, for example, the gravitational wave background is
dominated by a small number of distinct astrophysical sources. No signal was
seen. Upper limit maps were produced assuming two different power laws for the
source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8
kHz band the upper limits on the source strain power spectrum vary between
1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the
position in the sky. Similarly, in the case of constant strain power spectrum,
the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1.
As a side product a limit on an isotropic background of gravitational waves
was also obtained. All limits are at the 90% confidence level. Finally, as an
application, we focused on the direction of Sco-X1, the closest low-mass X-ray
binary. We compare the upper limit on strain amplitude obtained by this method
to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table