86 research outputs found

    Superfluid Vortex Dynamics on Planar Sectors and Cones

    Get PDF
    We study the dynamics of vortices formed in a superfluid film adsorbed on the curved two-dimensional surface of a cone. To this aim, we observe that a cone can be unrolled to a sector on a plane with periodic boundary conditions on the straight sides. The sector can then be mapped conformally to the whole plane, leading to the relevant stream function. In this way, we show that a superfluid vortex on the cone precesses uniformly at fixed distance from the apex. The stream function also yields directly the interaction energy of two vortices on the cone. We then study the vortex dynamics on unbounded and bounded cones. In suitable limits, we recover the known results for dynamics on cylinders and planar annuli.Comment: 10 pages, 8 figure

    Bose gas: Theory and Experiment

    Full text link
    For many years, 4^4He typified Bose-Einstein superfluids, but recent advances in dilute ultra-cold alkali-metal gases have provided new neutral superfluids that are particularly tractable because the system is dilute. This chapter starts with a brief review of the physics of superfluid 4^4He, followed by the basic ideas of Bose-Einstein condensation (BEC), first for an ideal Bose gas and then considering the effect of interparticle interactions, including time-dependent phenomena. Extensions to more exotic condensates include magnetic dipolar gases, mixtures of two components, and spinor condensates that require a focused infrared laser for trapping of all the various hyperfine magnetic states in a particular hyperfine FF manifold of mFm_F states. With an applied rotation, the trapped BECs nucleate quantized vortices. Recent theory and experiment have shown that laser coupling fields can mimic the effect of rotation. The resulting synthetic gauge fields have produced vortices in a nonrotating condensate

    Excited states of a static dilute spherical Bose condensate in a trap

    Full text link
    The Bogoliubov approximation is used to study the excited states of a dilute gas of NN atomic bosons trapped in an isotropic harmonic potential characterized by a frequency ω0\omega_0 and an oscillator length d0=/mω0d_0 = \sqrt{\hbar/m\omega_0}. The self-consistent static Bose condensate has macroscopic occupation number N01N_0 \gg 1, with nonuniform spherical condensate density n0(r)n_0(r); by assumption, the depletion of the condensate is small (NNN0N0N' \equiv N - N_0\ll N_0). The linearized density fluctuation operator ρ^\hat \rho' and velocity potential operator Φ^\hat\Phi' satisfy coupled equations that embody particle conservation and Bernoulli's theorem. For each angular momentum ll, introduction of quasiparticle operators yields coupled eigenvalue equations for the excited states; they can be expressed either in terms of Bogoliubov coherence amplitudes ul(r)u_l(r) and vl(r)v_l(r) that determine the appropriate linear combinations of particle operators, or in terms of hydrodynamic amplitudes ρl(r)\rho_l'(r) and Φl(r)\Phi_l'(r). The hydrodynamic picture suggests a simple variational approximation for l>0l >0 that provides an upper bound for the lowest eigenvalue ωl\omega_l and an estimate for the corresponding zero-temperature occupation number NlN_l'; both expressions closely resemble those for a uniform bulk Bose condensate.Comment: 5 pages, RevTeX, contributed paper accepted for Low Temperature Conference, LT21, August, 199

    Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap

    Full text link
    A two-dimensional rapidly rotating Bose-Einstein condensate in an anharmonic trap with quadratic and quartic radial confinement is studied analytically with the Thomas-Fermi approximation and numerically with the full time-independent Gross-Pitaevskii equation. The quartic trap potential allows the rotation speed Ω\Omega to exceed the radial harmonic frequency ω\omega_\perp. In the regime Ωω\Omega \gtrsim \omega_\perp, the condensate contains a dense vortex array (approximated as solid-body rotation for the analytical studies). At a critical angular velocity Ωh\Omega_h, a central hole appears in the condensate. Numerical studies confirm the predicted value of Ωh\Omega_h, even for interaction parameters that are not in the Thomas-Fermi limit. The behavior is also investigated at larger angular velocities, where the system is expected to undergo a transition to a giant vortex (with pure irrotational flow).Comment: 14 pages, 5 figure
    corecore