155 research outputs found

    Ramsey interference with single photons

    Full text link
    Interferometry using discrete energy levels in nuclear, atomic or molecular systems is the foundation for a wide range of physical phenomena and enables powerful techniques such as nuclear magnetic resonance, electron spin resonance, Ramsey-based spectroscopy and laser/maser technology. It also plays a unique role in quantum information processing as qubits are realized as energy superposition states of single quantum systems. Here, we demonstrate quantum interference of different energy states of single quanta of light in full analogy to energy levels of atoms or nuclear spins and implement a Ramsey interferometer with single photons. We experimentally generate energy superposition states of a single photon and manipulate them with unitary transformations to realize arbitrary projective measurements, which allows for the realization a high-visibility single-photon Ramsey interferometer. Our approach opens the path for frequency-encoded photonic qubits in quantum information processing and quantum communication.Comment: 16 page

    Frequency Multiplexing for Quasi-Deterministic Heralded Single-Photon Sources

    Full text link
    Single-photon sources based on optical parametric processes have been used extensively for quantum information applications due to their flexibility, room-temperature operation and potential for photonic integration. However, the intrinsically probabilistic nature of these sources is a major limitation for realizing large-scale quantum networks. Active feedforward switching of photons from multiple probabilistic sources is a promising approach that can be used to build a deterministic source. However, previous implementations of this approach that utilize spatial and/or temporal multiplexing suffer from rapidly increasing switching losses when scaled to a large number of modes. Here, we break this limitation via frequency multiplexing in which the switching losses remain fixed irrespective of the number of modes. We use the third-order nonlinear process of Bragg scattering four-wave mixing as an efficient ultra-low noise frequency switch and demonstrate multiplexing of three frequency modes. We achieve a record generation rate of 4.6×1044.6\times10^4 multiplexed photons per second with an ultra-low g2(0)g^{2}(0) = 0.07, indicating high single-photon purity. Our scalable, all-fiber multiplexing system has a total loss of just 1.3 dB independent of the number of multiplexed modes, such that the 4.8 dB enhancement from multiplexing three frequency modes markedly overcomes switching loss. Our approach offers a highly promising path to creating a deterministic photon source that can be integrated on a chip-based platform.Comment: 28 pages, 9 figures. Comments welcom
    • …
    corecore