4 research outputs found

    Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance

    Get PDF
    © 2014 The Authors. The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A 165 b. Whereas flTIA-1 selectively bound VEGF-A 165 mRNA and increased translation of VEGF-A 165 b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy

    Development and validation of a novel model to predict recurrence-free survival and melanoma-specific survival after sentinel lymph node biopsy in patients with melanoma:an international, retrospective, multicentre analysis

    No full text
    Background: The introduction of adjuvant systemic treatment for patients with high-risk melanomas necessitates accurate staging of disease. However, inconsistencies in outcomes exist between disease stages as defined by the American Joint Committee on Cancer (8th edition). We aimed to develop a tool to predict patient-specific outcomes in people with melanoma rather than grouping patients according to disease stage. Methods: Patients older than 13 years with confirmed primary melanoma who underwent sentinel lymph node biopsy (SLNB) between Oct 29, 1997, and Nov 11, 2013, at four European melanoma centres (based in Berlin, Germany; Amsterdam and Rotterdam, the Netherlands; and Warsaw, Poland) were included in the development cohort. Potential predictors of recurrence-free and melanoma-specific survival assessed were sex, age, presence of ulceration, primary tumour location, histological subtype, Breslow thickness, sentinel node status, number of sentinel nodes removed, maximum diameter of the largest sentinel node metastasis, and Dewar classification. A prognostic model and nomogram were developed to predict 5-year recurrence-free survival on a continuous scale in patients with stage pT1b or higher melanomas. This model was also calibrated to predict melanoma-specific survival. Model performance was assessed by discrimination (area under the time-dependent receiver operating characteristics curve [AUC]) and calibration. External validation was done in a cohort of patients with primary melanomas who underwent SLNB between Jan 30, 1997, and Dec 12, 2013, at the Melanoma Institute Australia (Sydney, NSW, Australia).Findings: The development cohort consisted of 4071 patients, of whom 2075 (51%) were female and 1996 (49%) were male. 889 (22%) had sentinel node-positive disease and 3182 (78%) had sentinel node-negative disease. The validation cohort comprised 4822 patients, of whom 1965 (41%) were female and 2857 (59%) were male. 891 (18%) had sentinel node-positive disease and 3931 (82%) had sentinel node-negative disease. Median follow-up was 4·8 years (IQR 2·3–7·8) in the development cohort and 5·0 years (2·2–8·9) in the validation cohort. In the development cohort, 5-year recurrence-free survival was 73·5% (95% CI 72·0–75·1) and 5-year melanoma-specific survival was 86·5% (85·3–87·8). In the validation cohort, the corresponding estimates were 66·1% (64·6–67·7) and 83·3% (82·0–84·6), respectively. The final model contained six prognostic factors: sentinel node status, Breslow thickness, presence of ulceration, age at SLNB, primary tumour location, and maximum diameter of the largest sentinel node metastasis. In the development cohort, for the model's prediction of recurrence-free survival, the AUC was 0·80 (95% CI 0·78–0·81); for prediction of melanoma-specific survival, the AUC was 0·81 (0·79–0·84). External validation showed good calibration for both outcomes, with AUCs of 0·73 (0·71–0·75) and 0·76 (0·74–0·78), respectively.Interpretation: Our prediction model and nomogram accurately predicted patient-specific risk probabilities for 5-year recurrence-free and melanoma-specific survival. These tools could have important implications for clinical decision making when considering adjuvant treatments in patients with high-risk melanomas. </p

    Development and validation of a novel model to predict recurrence-free survival and melanoma-specific survival after sentinel lymph node biopsy in patients with melanoma:an international, retrospective, multicentre analysis

    No full text
    Background: The introduction of adjuvant systemic treatment for patients with high-risk melanomas necessitates accurate staging of disease. However, inconsistencies in outcomes exist between disease stages as defined by the American Joint Committee on Cancer (8th edition). We aimed to develop a tool to predict patient-specific outcomes in people with melanoma rather than grouping patients according to disease stage. Methods: Patients older than 13 years with confirmed primary melanoma who underwent sentinel lymph node biopsy (SLNB) between Oct 29, 1997, and Nov 11, 2013, at four European melanoma centres (based in Berlin, Germany; Amsterdam and Rotterdam, the Netherlands; and Warsaw, Poland) were included in the development cohort. Potential predictors of recurrence-free and melanoma-specific survival assessed were sex, age, presence of ulceration, primary tumour location, histological subtype, Breslow thickness, sentinel node status, number of sentinel nodes removed, maximum diameter of the largest sentinel node metastasis, and Dewar classification. A prognostic model and nomogram were developed to predict 5-year recurrence-free survival on a continuous scale in patients with stage pT1b or higher melanomas. This model was also calibrated to predict melanoma-specific survival. Model performance was assessed by discrimination (area under the time-dependent receiver operating characteristics curve [AUC]) and calibration. External validation was done in a cohort of patients with primary melanomas who underwent SLNB between Jan 30, 1997, and Dec 12, 2013, at the Melanoma Institute Australia (Sydney, NSW, Australia).Findings: The development cohort consisted of 4071 patients, of whom 2075 (51%) were female and 1996 (49%) were male. 889 (22%) had sentinel node-positive disease and 3182 (78%) had sentinel node-negative disease. The validation cohort comprised 4822 patients, of whom 1965 (41%) were female and 2857 (59%) were male. 891 (18%) had sentinel node-positive disease and 3931 (82%) had sentinel node-negative disease. Median follow-up was 4·8 years (IQR 2·3–7·8) in the development cohort and 5·0 years (2·2–8·9) in the validation cohort. In the development cohort, 5-year recurrence-free survival was 73·5% (95% CI 72·0–75·1) and 5-year melanoma-specific survival was 86·5% (85·3–87·8). In the validation cohort, the corresponding estimates were 66·1% (64·6–67·7) and 83·3% (82·0–84·6), respectively. The final model contained six prognostic factors: sentinel node status, Breslow thickness, presence of ulceration, age at SLNB, primary tumour location, and maximum diameter of the largest sentinel node metastasis. In the development cohort, for the model's prediction of recurrence-free survival, the AUC was 0·80 (95% CI 0·78–0·81); for prediction of melanoma-specific survival, the AUC was 0·81 (0·79–0·84). External validation showed good calibration for both outcomes, with AUCs of 0·73 (0·71–0·75) and 0·76 (0·74–0·78), respectively.Interpretation: Our prediction model and nomogram accurately predicted patient-specific risk probabilities for 5-year recurrence-free and melanoma-specific survival. These tools could have important implications for clinical decision making when considering adjuvant treatments in patients with high-risk melanomas. </p
    corecore