585 research outputs found

    The Validity and Reliability of Co-heating Tests Made on Highly Insulated Dwellings

    Get PDF
    AbstractThe ability of a co-heating test to accurately identify a dwelling's envelope heat-loss coefficient has been explored using dynamic thermal simulation techniques, against a number of fabric specifications ranging from 1990 UK regulation levels through to modern Passivhaus requirements.Simple analysis methods can underestimate the heat-loss coefficient, by up to 50% for the highest performance standards considered. Using the best test and analysis methods found the envelope heat loss coefficient could be determined for current stock to better than 10% accuracy in a three week test duration. However that accuracy could not be reliably achieved in a shorter period, nor could it be achieved with a dwelling specification representing emerging standards of insulation, unless longer test periods were used

    Direct sampling of complex landscapes at low temperatures: the three-dimensional +/-J Ising spin glass

    Full text link
    A method is presented, which allows to sample directly low-temperature configurations of glassy systems, like spin glasses. The basic idea is to generate ground states and low lying excited configurations using a heuristic algorithm. Then, with the help of microcanonical Monte Carlo simulations, more configurations are found, clusters of configurations are determined and entropies evaluated. Finally equilibrium configuration are randomly sampled with proper Gibbs-Boltzmann weights. The method is applied to three-dimensional Ising spin glasses with +- J interactions and temperatures T<=0.5. The low-temperature behavior of this model is characterized by evaluating different overlap quantities, exhibiting a complex low-energy landscape for T>0, while the T=0 behavior appears to be less complex.Comment: 9 pages, 7 figures, revtex (one sentence changed compared to v2

    Robust pricing and hedging of double no-touch options

    Full text link
    Double no-touch options, contracts which pay out a fixed amount provided an underlying asset remains within a given interval, are commonly traded, particularly in FX markets. In this work, we establish model-free bounds on the price of these options based on the prices of more liquidly traded options (call and digital call options). Key steps are the construction of super- and sub-hedging strategies to establish the bounds, and the use of Skorokhod embedding techniques to show the bounds are the best possible. In addition to establishing rigorous bounds, we consider carefully what is meant by arbitrage in settings where there is no {\it a priori} known probability measure. We discuss two natural extensions of the notion of arbitrage, weak arbitrage and weak free lunch with vanishing risk, which are needed to establish equivalence between the lack of arbitrage and the existence of a market model.Comment: 32 pages, 5 figure

    Force-Extension Relations for Polymers with Sliding Links

    Full text link
    Topological entanglements in polymers are mimicked by sliding rings (slip-links) which enforce pair contacts between monomers. We study the force-extension curve for linear polymers in which slip-links create additional loops of variable size. For a single loop in a phantom chain, we obtain exact expressions for the average end-to-end separation: The linear response to a small force is related to the properties of the unstressed chain, while for a large force the polymer backbone can be treated as a sequence of Pincus--de Gennes blobs, the constraint effecting only a single blob. Generalizing this picture, scaling arguments are used to include self-avoiding effects.Comment: 4 pages, 5 figures; accepted to Phys. Rev. E (Brief Report

    Cerebral cortex maldevelopment in syndromic craniosynostosis

    Get PDF
    AIM: To assess the relationship of surface area of the cerebral cortex to intracranial volume (ICV) in syndromic craniosynostosis. METHOD: Records of 140 patients (64 males, 76 females; mean age 8y 6mo [SD 5y 6mo], range 1y 2mo–24y 2mo) with syndromic craniosynostosis were reviewed to include clinical and imaging data. Two hundred and three total magnetic resonance imaging (MRI) scans were evaluated in this study (148 patients with fibroblast growth factor receptor [FGFR], 19 patients with TWIST1, and 36 controls). MRIs were processed via FreeSurfer pipeline to determine total ICV and cortical surface area (CSA). Scaling coefficients were calculated from log‐transformed data via mixed regression to account for multiple measurements, sex, syndrome, and age. Educational outcomes were reported by syndrome. RESULTS: Mean ICV was greater in patients with FGFR (1519cm(3), SD 269cm(3), p=0.016) than in patients with TWIST1 (1304cm(3), SD 145cm(3)) or controls (1405cm(3), SD 158cm(3)). CSA was related to ICV by a scaling law with an exponent of 0.68 (95% confidence interval [CI] 0.61–0.76) in patients with FGFR compared to 0.81 (95% CI 0.50–1.12) in patients with TWIST1 and 0.77 (95% CI 0.61–0.93) in controls. Lobar analysis revealed reduced scaling in the parietal (0.50, 95% CI 0.42–0.59) and occipital (0.67, 95% CI 0.54–0.80) lobes of patients with FGFR compared with controls. Modified learning environments were needed more often in patients with FGFR. INTERPRETATION: Despite adequate ICV in FGFR‐mediated craniosynostosis, CSA development is reduced, indicating maldevelopment, particularly in parietal and occipital lobes. Modified education is also more common in patients with FGFR

    Scaling violations: Connections between elastic and inelastic hadron scattering in a geometrical approach

    Get PDF
    Starting from a short range expansion of the inelastic overlap function, capable of describing quite well the elastic pp and pˉp\bar{p}p scattering data, we obtain extensions to the inelastic channel, through unitarity and an impact parameter approach. Based on geometrical arguments we infer some characteristics of the elementary hadronic process and this allows an excellent description of the inclusive multiplicity distributions in pppp and pˉp\bar{p}p collisions. With this approach we quantitatively correlate the violations of both geometrical and KNO scaling in an analytical way. The physical picture from both channels is that the geometrical evolution of the hadronic constituents is principally reponsible for the energy dependence of the physical quantities rather than the dynamical (elementary) interaction itself.Comment: 16 pages, aps-revtex, 11 figure
    • 

    corecore