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1. Introduction

We consider a multi-item, multi-period, capacitated production
scheduling problem with holding costs. The problem is to determine
how much to produce of each item, in each period of the planning
horizon, in order to minimize the total holding cost over all
periods. Demand for each item is deterministic and known for all
periods of the planning horizon. It is assumed that backlogging of
demand is not allowed, and further, that production capacity over
the planning horizon is enough to meet demand for all items. Set-up
costs are assumed to be equal to zero. This problem may arise as a
subproblem in a hierarchical problem formulation in which other
costs are introduced at a higher level, eg. Aull and Ramdas [1]
(see Section 5). It can be easily formulated as a transportation
problem, and can therefore be solved using any standard
transportation code, eg. Orlin [7]. In this paper, we present a
faster algorithm that takes advantage of the special structure of

the problem, thus leading to a reduction in complexity.

The remainder of this paper is organized as follows. In the next
section, we first formulate the problem as a production scheduling
problem, and then as an equivalent transportation problem. In
Section 3, we provide a characterization of optimal solutions to
this problem. In Section 4, we present an algorithm which computes

the optimal solution. The complexity of our algorithm is shown to



3
be O(NT), where N is the number of distinct items, and T 1is the
number of periods in the planning horizon. In Section 5 we discuss
extensions, an alternative proof that our algorithm provides an

optimal solution, and applications.

2. Formulation

If set-up costs are included, the problem described in Section 1 is
a multi-item capacitated 1lot sizing; problem. A review of the
literature on lot-sizing problems can be found in Bahl, Ritzman,
and Gupta [2]. The multi-item capacitated lot-sizing problem is NP
hard (for a complexity analysis, see Florian, Lenstra, and Rinnooy
Kan [5]). Several heuristics have been devised for this problem; a
comparison of heuristics can be found in Maes and Van Wassenhove
[6]. In our approach to this problem, the simplifying factor is
that set-up costs are ignored. The following is a formulation of
our problem as a multi-item capacitated lot sizing problem without

set-up costs.

Problem 1.1

Minimize
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where
X; . = number of units of item j produced in pericd t,
I, = ending inventory of item j in period t,
d; . = demand for item j in period t,
h, = holding cost per unit per period for item j, and
C, = total production capacity in period t.

By assumption, we have,

e, : ¥d,, t=1,...T.
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Problem 1.2 below is a plant location reformulation of Problem 1.1.
This reformulation can also be found in Barany, Van Roy, and Wolsey

(3], and in Wagelmans, Van Hoesel, and Kolen [8].

Problenm 1.2

Minimize
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where

Yies = number of units of item j produced in period t and used to
meet demand in period s, and other symbols have the same
meanings as in the previous formulation.

Note that the above formulations are related by the following

equation:

Define

oo fFa .

L=l J=1t=1

If 4, > 0, we have excess capacity. For convenience in our
analysis, we eliminate this excess capacity by introducing an

artificial item, say N+1, with zero holding cost, i.e., h = 0;

N+1

further, we set d = 0 for all other t. In this

= dy, and d

N+1,T N+1,t

case, Problem 1.2 can be reformulated as shown below.

Problem 1.3

Minimize
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i5ﬁ,us = dLs j=1,..N+1, s =1,..T
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where all symbols have the same meanings as in Problem 1.2. It is
evident that Problem 1.3 i3 a transportation problem; its network
structure is depicted in Figure 1. Henceforth we will deal only
with Problem 1.3. Further, we assume without loss of generality
that inventory costs are different for all items. This can be

accomplished by identifying items with equal inventory costs.
3. Characterization of an Optimal SBolution to Problem 1.3

We present a property which is both necessary and sufficient for

optimality in Problem 1.3.

Property 1

For any distinct items i and j, if there is production of item i in
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period t, to meet demand in period t, 2 t,, and there is production
of item j in period t,' to meet demand in period t,' 2 t;' such that

t,! < t, £ t,', then h; < h; (see Figure 2).

Theorem 1

Property 1 is a necessary as well as a sufficient condition for
optimality in Problem 1.3.

Proof

We first prove that Property 1 is a necessary condition for
optimality. To do this, we start with a solution that does not
satisfy Property 1, and show by way of an exchange argument that a
better solution exists.

Let S be a feasible solution to Problem 1.3, such that S does not
satisfy Property 1. That is, there exist distinct items i and j,
such that in solution S, item i is produced in periocd t, to meet
demand in period t, 2z t, and item j is produced in period t,' to
meet demand in period t,' 2 t;', such that t,' <t, < t,', and h; < hr
The cost of producing one unit of each item in this case is

A= h(t, - t) + h(t,' - t").

However, we can exchange production since T, ' =%, t,'. Suppose
that we produce one unit of item i in period t,' to meet demand in
period t, and we produce one unit of item j in period t, to meet
demand in period t,'.

In this case, the cost of producing one unit of each item is

B =h(t, - t,') + h(t, - t).

Since all other costs remain unchanged, the difference in costs
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caused by this exchange is A-B. Now A-B is equal to
(h; = h;)(t; - t,'), which is positive, so the modified solution is

cheaper than S. Hence, S cannot be optimal.

We prove that Property 1 is a sufficient condition for optimality
by assuming the contrary, and arriving at a contradiction. Assume
that there exists a non-optimal solution to Problem 1.3, that
satisfies Property 1. We will refer to this solution as S. S may be
depicted as a set of flows in a directed network, as shown in
Figure 1. Let S° denote an optimal solution to Problem 1.3.
Further, let S-S denote the set of flows obtained by subtracting
the flow along each arc of the network as dictated by 8" from the
corresponding flow as dictated by S. As the flows along the demand
and supply arcs are the same in 5 and s*, these arcs will have zero
flow in S-S". Hence, the flows S-S° must consist of a set of
circuits, where a circuit is a set of flows of identical absolute
magnitude, such that each flow is on a distinct arc, the arcs form
a closed loop, and each node in the circuit has exactly one

incoming arc, and one outgoing arc.

Let C be an arbitrarily chosen circuit in S. Let t, be the last
time period covered by circuit C. C must contain four arcs as
depicted in Figqure 3 below. The arcs are numbered 1, 2, 3, and 4.
Note that arc 1 corresponds to item i, whose holding cost is hy,
while arc 4 corresponds to item j, whose holding cost is ny.

a) From arc 1 it follows that in Solution S, at least one unit of
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demand for item i in period t, is satisfied from production in
a period prior to t,.

b) From arc 2 it follows that in Solution s, at least one unit of
item i is produced in period t,, for consumption in or after
period t,.

c) From arc 3 it follows that in Solution S, at least one unit of
item j is produced in period t,, for consumption in or after
period t,.

d) From arc 4 it follows that in Solution S*, at least one unit of

demand for item j in period t, is satisfied from production in

a period prior to t,.

From a) and c) and the fact that S satisfies Property 1, it follows
that h; < h,.

From b) and d) and the fact that S* satisfies Property 1, it
follows that h, > hr

We have thus arrived at a contradiction. Hence, Property 1 is a

sufficient condition for optimality.
4. Optimal Algorithm for Problem 1.3

We present a greedy algorithm for Problem 1.3. The solution
provided by this algorithm is shown to satisfy Property 1 of
Section 3. The complexity of the algorithm is shown to be O(NT),
where N is the number of distinct items, and T is the number of

periods in the planning horizon.
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Algorithm
The following conventions are used. Items are arranged in order of
increasing holding costs. We refer to the ordered items as i,,...1i,.
It is assumed that total capacity is exactly equal to total demand
(if this is not the case, we introduce an additional item, say i,
as discussed in Section 2 above). Further, we assume that if C,, and

d (t'< t'') are decreased by x, then x units of capacity in

it
period t' are used to satisfy demand of item i in period t''. The
algorithm presented below treats the most expensive items first.
For each item under consideration, the production periods are

determined in backward fashion, in order to guarantee the

complexity of O(NT).

For i:= N downto 1
do
t', &' =T

while t' > 0

do
x := min(C,, , d;..}i Cu = Cp = Xi Qg 1= dy — XJ
if 4,,,, = 0 then
trr =t -1
endif
if C¢,, = 0 then
t =t -1
endif

if £' > t'' then
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tl tll

endif
enddo

enddo

The above algorithm ensures that in any period t', the capacity C,.
is used first to fulfil the costliest demand as yet not met in
periods greater than or equal to t'. So, if capacity from some
period t'' less than t' is used to fulfil demand in a period
greater than or equal to t!', it must be for an item at most as
costly as the items whose demand is satisfied from production in
t'. Hence, this algorithm satisfies Property 1. Further, the

complexity of this algorithm is clearly O(NT).

Concluding Remarks

In this section, we discuss an extension of our algorithm, and an
alternative proof that it provides an optimal solution to Problem

1.3. This is followed by a discussion of possible applications.

In Problem 1.3 of Section 2, we assumed that production of each
unit of item j, j=1,..N+1, requires a single unit of capacity. Now
consider the more general problem in which production of a unit of
item j, j=1,..N+1, requires a, units of capacity. Assuming that
production of a unit of any item can be split accross several

periods, this problem can be shown to be equivalent to our Problem
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1.3 through the following transformation of demands and holding
costs :

d., := ajd

it and h; := h;/a;, for j=1,..N+1.

jtr
The Monge structure of the cost matrix associated with Problem 1.3
of Section 2 provides an alternative method to prove that our
algorithm provides an optimal solution. For a transportation
problem with allowable variables A and excluded variables E, a
monge sequence is a one-to-one numbering f:A - (1,..,|A|). A cost
matrix C = (¢;) is said to be consonant with f if

r < s,t and

£(r) = (1,3), £(s) = (1,3"), £(t) = (1',3)

(1) (i',j') is in A and

(2) Cyj + Cpipa < Cijr +Cquje
For any monge sequence f, the f-greedy algorithm successively
maximizes, Xt'th, Xf'@», etc, subject to demand and supply

constraints.

It is easy to show that if a cost matrix C is consonant with a
monge sequence f, then for all row and column sums, the f-greedy
algorithm
a) produces a feasible solution if there is one, and
b) produces an optimal solution if there is a feasiblle
solution.

The cost matrix associated with Problem 1.3 is consonant with the
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sequence followed by our algorithm; this completes the proof.

Aull and Ramdas [1] use two alternative approaches to model a
multi-item, multi-period, deterministic production scheduling
problem characterised by extremely high, sequence dependent set-up
costs, and relatively low inventory holding costs. Our algorithm
may be used to enhance both their approaches. In their article, the
authors group end items into families such that changing from
production of one item to another within the same family requires
negligible set-up, whereas a major set-up cost is incurred in
changing from production of one family to another. Items within the
same family may have varying inventory holding costs. The authors
assume that the number of machines évailable is fixed, and is
enough to meet demand over the planning horizon without
backlogging. Machine productivity is allowed to vary across, but
not within product families. The number of machines assigned to
each family, in each period of the planning horizon, must be
integral, while the number of machines assigned to each item may
take on continuous values. In their first approach, Aull and Ramdas
formulate a mixed integer model which contains variables for
aggregate as well as end-item production. 'Bridging' constraints
are used to relate end item production to aggregate family
production. This model minimizes the sum of set-up cost across
families, and holding cost over end items. The authors also present
a two level hierarchical formulation which considers set-up costs

at the family level, and holding costs at the item level. Our
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algorithm can be used to solve their lower level problem. Also, our
algorithm may be used within a decomposition method such as

Benders' partitioning [4], to solve their mixed integer

formulation.
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Figure 1

Network Structure of Problem 1.3
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Figure 2

Representation of Property 1
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Figqure 3
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