133 research outputs found
LEIDENFROST DROPLET MICROFLUIDICS
Systems and methods are described for propelling a liquid droplet in a Leidenforst state. A microfluidic device embodiment includes, but is not limited to, a solid structure having a patterned surface, the patterned surface including at least a first patterned region having a first Leidenfrost temperature with respect to a fluid, the first patterned region adjacent to the second patterned region, the first patterned region defining a path over which a droplet of the fluid is configured to travel in a Leidenfrost state
Monolithic Heat-Transfer Device
A monolithic heat-transfer device can include a container wall configured to retain a working fluid, where the container wall is formed of a single material. The container wall also includes an interior surface configured to be in fluid communication with the working fluid. The monolithic heat-transfer device also includes a channel disposed in the interior surface of the container wall, where the channel comprises a microstructure and a nanostructure. The microstructure and the nanostructure are materially contiguous with the single material forming the container wall. In some embodiments, the nanostructure comprises one or more layers of nanoparticles. The monolithic heat-transfer device can be configured as a heat pipe, which can be constructed from the container wall and a second container wall joined together and sealed to one another to contain the working fluid (e.g., using laser welding, electron beam welding (EBW), and so forth)
Quantifying Wicking in Functionlized Surfaces
Wicking remains the enigmatic key factor in many research areas. From boiling in power plants, to anti-icing on plane wings, to medical instruments, to heat pipes, efficiency and safety depend on how quickly a surface becomes wet. Yet wicking remains difficult to quantify and define as a property of the surface. This experiment strives to measure the wicking property by examining the rate that a liquid can be pulled out of a container. A superhydrophilic surface is placed in contact with the liquid at the bottom of a tube so that the volume flow rate across the surface can be monitored by a camera. By tracking the liquid level in the tube as a function of time, the wicking property of the surface can be quantified. Different tube sizes were compared to ensure that a property of the surface was being accurately measured
Role of Copper Oxide Layer on Pool Boiling Performance with Femtosecond Laser Processed Surfaces
Copper pool boiling surfaces are tested for pool boiling enhancement due to femtosecond laser surface processing (FLSP). FLSP creates self-organized micro/nanostructures on metallic surfaces and creates highly wetting and wicking surfaces with permanent surface features. In this study two series of samples were created. The first series consists of three flat FLSP copper surfaces with varying microstructures and the second series is an open microchannel configuration with laser processing over the horizontal surfaces of the microchannels. These microchannels range in height from 125 microns to 380 microns. Each of these surfaces were tested for pool boiling performance. It was found that all the processed surfaces except one resulted in a decrease in critical heat flux and heat transfer coefficient compared to an unprocessed surface. It was found that the laser fluence parameter had a significant role in whether there was an increase in CHF or HTC. A cross sectioning technique was employed to study the different layers of the microstructure and to understand how FLSP could have a negative effect on the CHF and HTC. It was found that a thick oxide layer forms during the FLSP process of copper in an open-air atmosphere. The thickness and uniformity of the oxide layer is highly dependent on the laser fluence. A low fluence sample results in an inconsistent oxide layer of nonuniform thickness and subsequently an increase in CHF and HTC. A high laser fluence sample results in a uniformly thick oxide layer which increases the thermal resistance of the sample and allows for a premature CHF and decrease in HTC
Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces
In this paper, we present an experimental investigation of pool boiling heat transfer on multiscale (micro/nano) functionalized metallic surfaces. Heat transfer enhancement in metallic surfaces is very important for large scale high heat flux applications like in the nuclear power industry. The multiscale structures were fabricated via a femtosecond laser surface process (FLSP) technique, which forms self-organized mound-like microstructures covered by layers of nanoparticles. Using a pool boiling experimental setup with deionized water as the working fluid, both the heat transfer coefficients and critical heat flux were investigated. A polished reference sample was found to have a critical heat flux of 91 W/cm2 at 40 °C of superheat and a maximum heat transfer coefficient of 23,000 W/m2 K. The processed samples were found to have a maximum critical heat flux of 142 W/cm2 at 29 °C and a maximum heat transfer coefficient of 67,400 W/m2 K. It was found that the enhancement of the critical heat flux was directly related to the wetting and wicking ability of the surface which acts to replenish the evaporating liquid and delay critical heat flux. The heat transfer coefficients were also found to increase when the surface area ratio was increased as well as the microstructure peak-to-valley height. Enhanced nucleate boiling is the main heat transfer mechanism, and is attributed to an increase in surface area and nucleation site density
Self‑propelled droplets on heated surfaces with angled self‑assembled micro/nanostructures
Directional and ratchet-like functionalized surfaces can induce liquid transport without the use of an external force. In this paper, we investigate the motion of liquid droplets near the Leidenfrost temperature on functionalized self-assembled asymmetric microstructured surfaces. The surfaces, which have angled microstructures, display unidirectional properties. The surfaces are fabricated on stainless steel through the use of a femtosecond laser-assisted process. Through this process, mound-like microstructures are formed through a combination of material ablation, fluid flow, and material redeposition. In order to achieve the asymmetry of the microstructures, the femtosecond laser is directed at an angle with respect to the sample surface. Two surfaces with microstructures angled at 45° and 10° with respect to the surface normal were fabricated. Droplet experiments were carried out with deionized water and a leveled hot plate to characterize the directional and self-propelling properties of the surfaces. It was found that the droplet motion direction is opposite of that for a surface with conventional ratchet microstructures reported in the literature. The new finding could not be explained by the widely accepted mechanism of asymmetric vapor flow. A new mechanism for a self-propelled droplet on asymmetric three-dimensional self-assembled microstructured surfaces is proposed
Investigation of femtosecond laser induced ripple formation on copper for varying incident angle
The hydrodynamic mechanisms associated with the formation of femtosecond laser induced ripples on copper for two angles of incidence are reported. Laser pulse length used for this work is 35 fs. A revised two-temperature model is presented that comprises transient changes of optical characteristics during the irradiation with femtosecond pulses to model relaxation processes and thermal response in bulk copper. The theoretical model takes into account the fluid flow dynamics that result in ripple periods shorter than the wavelength of the surface plasmon polaritons. Theoretical and experimental results are reported for incident angles of 0°and 45° relative to the surface normal. There is agreement between the experimentally measured and the theoretically predicted ripple periodicity for 50 pulses at 0° incidence. By contrast, for 100 pulses at 0° incidence, and 50 and 100 pulses at 45° incidence, the experimentally measured ripples have a larger period than the one predicted by the model while the trends in period with increased incident angle, and increased fluence are in agreement between the experimental and the theoretical results
Growth mechanisms of multiscale, mound-like surface structures on titanium by femtosecond laser processing
Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophobicity/- hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser ablation is the primary formation mechanism. However, the underlying microstructure of mounds produced using higher fluence values was composed of a distinct smaller-grained a-Ti region adjacent to the original larger Ti grains remaining deeper beneath the surface. This layer was attributed to resolidification of molten Ti from the hydrodynamic Marangoni effect driven fluid flow of molten Ti, which is the result of the femtosecond pulse interaction with the material
Growth mechanisms of multiscale, mound-like surface structures on titanium by femtosecond laser processing
Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophobicity/- hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser ablation is the primary formation mechanism. However, the underlying microstructure of mounds produced using higher fluence values was composed of a distinct smaller-grained a-Ti region adjacent to the original larger Ti grains remaining deeper beneath the surface. This layer was attributed to resolidification of molten Ti from the hydrodynamic Marangoni effect driven fluid flow of molten Ti, which is the result of the femtosecond pulse interaction with the material
POOL BOILING INVERSION ON FEMTOSECOND LASER SURFACE PROCESSED 304 STAINLESS STEEL AND ITS IMPACT ON STEADY-STATE TIME CONSTANTS
FLSP surfaces resulting in boiling inversion require longer times to reach steady-state once inversion has occurred Boiling inversion has been shown to be the result of changing nucleation dynamics in which a large number of nucleation sites activate Increased time required to reach steady-state is linked to the rate at which these nucleation sites activate. Heat fluxes above the boiling inversion point can require up to an additional 3 hours to reach steady-state, compared to the typical 15-20 minutes reported in the literatur
- …