210 research outputs found

    Upper Bounds for Mutations of Potentials

    Full text link
    In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]

    Preparation of Highly Coupled Rat Heart Mitochondria

    Get PDF
    The function of mitochondria in generation of cellular ATP in the process of oxidative phosphorylation is widely recognised. During the past decades there have been significant advances in our understanding of the functions of mitochondria other than the generation of energy. These include their role in apoptosis, acting as signalling organelles, mammalian development and ageing as well as their contribution to the coordination between cell metabolism and cell proliferation. Our understanding of biological processes modulated by mitochondria is based on robust methods for isolation and handling of intact mitochondria from tissues of the laboratory animals. Mitochondria from rat heart is one of the most common preparations for past and current studies of cellular metabolism including studies on knock-out animals

    Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex I

    Get PDF
    AbstractMitochondrial complex I is a large, membrane-bound enzyme central to energy metabolism, and its dysfunction is implicated in cardiovascular and neurodegenerative diseases. An interesting feature of mammalian complex I is the so-called A/D transition, when the idle enzyme spontaneously converts from the active (A) to the de-active, dormant (D) form. The A/D transition plays an important role in tissue response to ischemia and rate of the conversion can be a crucial factor determining outcome of ischemia/reperfusion. Here, we describe the effects of alkali cations on the rate of the D-to-A transition to define whether A/D conversion may be regulated by sodium.At neutral pH (7–7.5) sodium resulted in a clear increase of rates of activation (D-to-A conversion) while other cations had minor effects. The stimulating effect of sodium in this pH range was not caused by an increase in ionic strength. EIPA, an inhibitor of Na+/H+ antiporters, decreased the rate of D-to-A conversion and sodium partially eliminated this effect of EIPA. At higher pH (>8.0), acceleration of the D-to-A conversion by sodium was abolished, and all tested cations decreased the rate of activation, probably due to the effect of ionic strength.The implications of this finding for the mechanism of complex I energy transduction and possible physiological importance of sodium stimulation of the D-to-A conversion at pathophysiological conditions in vivo are discussed

    Associative and Non-Associative Plasticity in Kenyon Cells of the Honeybee Mushroom Body

    Get PDF
    The insect mushroom bodies are higher-order brain centers and critical for odor learning. We investigated experience dependent plasticity of their intrinsic neurons, the Kenyon cells (KCs). Using calcium imaging, we recorded KC responses and investigated non-associative plasticity by applying repeated odor stimuli. Associative plasticity was examined by performing appetitive odor learning experiments. Olfactory, gustatory and tactile antennal stimuli evoked phasic calcium transients in sparse ensembles of responding KCs. Repeated stimulation with an odor led to a decrease in KCs' response strength. The pairing of an odor (conditioned stimulus, CS) with a sucrose reward (unconditioned stimulus) induced a prolongation of KC responses. After conditioning, KC responses to a rewarded odor (CS+) recovered from repetition-induced decrease, while the responses to a non-rewarded odor (CS−) decreased further. The spatio-temporal pattern of activated KCs changed for both odors when compared with the response before conditioning but the change was stronger for the CS−. These results demonstrate that KC responses are subject to non-associative plasticity during odor repetition and undergo associative plasticity after appetitive odor learning

    Conformational Change of Mitochondrial Complex I Increases ROS Sensitivity During Ischemia

    Get PDF
    Aims: Myocardial ischemia/reperfusion (I/R) is associated with mitochondrial dysfunction and subsequent cardiomyocyte death. The generation of excessive quantities of reactive oxygen species (ROS) and resultant damage to mitochondrial enzymes is considered an important mechanism underlying reperfusion injury. Mitochondrial complex I can exist in two interconvertible states: active (A) and deactive or dormant (D). We have studied the active/deactive (A/D) equilibrium in several tissues under ischemic conditions in vivo and investigated the sensitivity of both forms of the heart enzyme to ROS. Results: We found that in the heart, t(½) of complex I deactivation during ischemia was 10 min, and that reperfusion resulted in the return of A/D equilibrium to its initial level. The rate of superoxide generation by complex I was higher in ischemic samples where content of the D-form was higher. Only the D-form was susceptible to inhibition by H(2)O(2) or superoxide, whereas turnover-dependent activation of the enzyme resulted in formation of the A-form, which was much less sensitive to ROS. The mitochondrial-encoded subunit ND3, most likely responsible for the sensitivity of the D-form to ROS, was identified by redox difference gel electrophoresis. Innovation: A combined in vivo and biochemical approach suggests that sensitivity of the mitochondrial system to ROS during myocardial I/R can be significantly affected by the conformational state of complex I, which may therefore represent a new therapeutic target in this setting. Conclusion: The presented data suggest that transition of complex I into the D-form in the absence of oxygen may represent a key event in promoting cardiac injury during I/R. Antioxid. Redox Signal. 19, 1459–1468

    The ‘PAMIR XXI’ Project of a Complex Setup for the PCR Study in a Wide Energy Range 1014– 1018eV

    Get PDF
    A new comprehensive EAS experiment for multi-component study of the energy spectrum behavior and composition of the PCR in a wide energy range 1014 – 1018 eV is launched at the Pamirs this year. The experimental setup of ~ 1 km2 in area combines conventional EAS array technique with those of X-Ray emulsion chamber, Cherenkov detector array and Cherenkov atmospheric imaging telescopes (IACT). The goals of the experiment and the experimental techniques are discussed

    Minkowski polynomials and mutations

    Get PDF
    Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with cluster algebras. We propose a higher-dimensional analog of mutation acting on Laurent polynomials f in n variables. In particular we give a combinatorial description of mutation acting on the Newton polytope P of f, and use this to establish many basic facts about mutations. Mutations can be understood combinatorially in terms of Minkowski rearrangements of slices of P, or in terms of piecewise-linear transformations acting on the dual polytope P* (much like cluster transformations). Mutations map Fano polytopes to Fano polytopes, preserve the Ehrhart series of the dual polytope, and preserve the period of f. Finally we use our results to show that Minkowski polynomials, which are a family of Laurent polynomials that give mirror partners to many three-dimensional Fano manifolds, are connected by a sequence of mutations if and only if they have the same period

    Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart

    Get PDF
    AbstractMitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10−8M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme
    corecore