15 research outputs found

    Toward the Quasi-Steady State Electrodynamics of a Neutron Star

    Get PDF
    We consider the electrodynamics of a rotating magnetized neutron star with allowance for the quasi-steady state regime of charged particle ejection from the polar cap into the inner magnetosphere. We derive basic equations within the framework of a general relativistic formalism and present the analytic solutions. We demonstrate that the quasi-steady state supply of electrons into the region of open field lines reduces the total power put into the acceleration of primary particles, although the total power corresponding to a steady state solution in general relativity is increased compared to the flat-space solution. Also, we illustrate that temporarily modulated ejection of electrons from the stellar surface results in substantial modulation of an accelerating electric field and charge density along the open field lines. We briefly outline the implications of this effect for the pulsars

    Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission I. Curvature Radiation Pair Fronts

    Get PDF
    We investigate the effect of pulsar polar cap (PC) heating produced by positrons returning from the upper pair formation front. Our calculations are based on a self-consistent treatment of the pair dynamics and the effect of electric field screening by the returning positrons. We calculate the resultant X-ray luminosities, and discuss the dependence of the PC heating efficiencies on pulsar parameters, such as characteristic spin-down age, spin period, and surface magnetic field strength. In this study we concentrate on the regime where the pairs are produced in a magnetic field by curvature photons emitted by accelerating electrons. Our theoretical results are not in conflict with the available observational X-ray data and suggest that the effect of PC heating should significantly contribute to the thermal X-ray fluxes from middle-aged and old pulsars. The implications for current and future X-ray observations of pulsars are briefly outlined.Comment: 28 pages, 7 figures, accepted for publication in Ap

    Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission II. Inverse Compton Radiation Pair Fronts

    Get PDF
    We investigate the production of electron-positron pairs by inverse Compton scattered (ICS) photons above a pulsar polar cap (PC) and surface heating by returning positrons. This paper is a continuation of our self-consistent treatment of acceleration, pair dynamics and electric field screening above pulsar PCs. We calculate the altitude of the inverse Compton pair formation fronts, the flux of returning positrons and present the heating efficiencies and X-ray luminosities. We revise pulsar death lines implying cessation of pair formation, and present them in surface magnetic field-period space. We find that virtually all known radio pulsars are capable of producing pairs by resonant and non-resonant ICS photons radiated by particles accelerated above the PC in a pure star-centered dipole field, so that our ICS pair death line coincides with empirical radio pulsar death. Our calculations show that ICS pairs are able to screen the accelerating electric field only for high neutron star surface temperatures and magnetic fields. We argue that such screening at ICS pair fronts occurs locally, slowing but not turning off acceleration of particles until screening can occur at a curvature radiation (CR) pair front at higher altitude. In the case where no screening occurs above the PC surface, we anticipate that the pulsar gamma-ray luminosity will be a substantial fraction of its spin-down luminosity. The X-ray luminosity resulting from PC heating by ICS pair fronts is significantly lower than the PC heating luminosity from CR pair fronts, which dominates for most pulsars. PC heating from ICS pair fronts is highest in millisecond pulsars, which cannot produce CR pairs, and may account for observed thermal X-ray components in the spectra of these old pulsars.Comment: 29 pages, 10 figures, accepted for publication in Ap

    Pulsar X-Ray and Gamma-Ray Pulse Profiles: Constraint on Obliquity and Observer Angles

    Get PDF
    We model the thermal X-ray profiles of Geminga, Vela and PSR 0656+14, which have also been detected as gamma-ray pulsars, to constrain the phase space of obliquity and observer angles required to reproduce the observed X-ray pulsed fractions and pulse widths. These geometrical constraints derived from the X-ray light curves are explored for various assumptions about surface temperature distribution and flux anisotropy caused by the magnetized atmosphere. We include curved spacetime effects on photon trajectories and magnetic field. The observed gamma-ray pulse profiles are double peaked with phase separations of 0.4 - 0.5 between the peaks. Assuming that the gamma-ray profiles are due to emission in a hollow cone centered on the magnetic pole, we derive the constraints on the phase space of obliquity and observer angles, for different gamma-ray beam sizes, required to produce the observed gamma-ray peak phase separations. We compare the constraints from the X-ray emission to those derived from the observed gamma-ray pulse profiles, and find that the overlapping phase space requires both obliquity and observer angles to be smaller than 20-30 degrees, implying gamma-ray beam opening angles of at most 30-35 degrees.Comment: 29 pages, 9 embedded figures, AASTEX v.4, To appear in ApJ, June 20, 1998 (Vol. 499

    Particle Acceleration Zones Above Pulsar Polar Caps: Electron and Positron Pair Formation Fronts

    Get PDF
    We investigate self-consistent particle acceleration near a pulsar polar cap (PC) by the electrostatic field due to the effect of inertial frame dragging. Test particles gain energy from the electric field parallel to the open magnetic field lines and lose energy by both curvature radiation (CR) and resonant and non-resonant inverse Compton scattering (ICS) with soft thermal X-rays from the neutron star (NS) surface. Gamma-rays radiated by electrons accelerated from the stellar surface produce pairs in the strong magnetic field, which screen the electric field beyond a pair formation front (PFF). Some of the created positrons can be accelerated back toward the surface and produce gamma-rays and pairs that create another PFF above the surface. We find that ICS photons control PFF formation near the surface, but due to the different angles at which the electron and positron scatter the soft photons, positron initiated cascades develop above the surface and screen the accelerating electric field. Stable acceleration from the NS surface is therefore not possible in the presence of dominant ICS energy losses. However, we find that stable acceleration zones may occur at some distance above the surface, where CR dominates the electron and positron energy losses, and there is up-down symmetry between the electron and positron PFFs. We examine the dependence of CR-controlled acceleration zone voltage, width and height above the surface on parameters of the pulsar and its soft X-ray emission. For most pulsars, we find that acceleration will start at a height of 0.5 - 1 stellar radii above the NS surface.Comment: 46 pages, 12 embedded figures, accepted for publication in Ap

    Mechanisms for High-frequency QPOs in Neutron Star and Black Hole Binaries

    Get PDF
    We explain the millisecond variability detected by Rossi X-ray Timing Explorer (RXTE) in the X-ray emission from a number of low mass X-ray binary systems (Sco X-1, 4U1728-34, 4U1608-522, 4U1636-536, 4U0614+091, 4U1735-44, 4U1820-30, GX5-1 and etc) in terms of dynamics of the centrifugal barrier, a hot boundary region surrounding a neutron star. We demonstrate that this region may experience the relaxation oscillations, and that the displacements of a gas element both in radial and vertical directions occur at the same main frequency, of order of the local Keplerian frequency. We show the importance of the effect of a splitting of the main frequency produced by the Coriolis force in a rotating disk for the interpretation of a spacing between the QPO peaks. We estimate a magnitude of the splitting effect and present a simple formula for the whole spectrum of the split frequencies. It is interesting that the first three lowest-order overtones fall in the range of 200-1200 Hz and match the kHz-QPO frequencies observed by RXTE. Similar phenomena should also occur in Black Hole (BH) systems, but, since the QPO frequency is inversely proportional to the mass of a compact object, the frequency of the centrifugal-barrier oscillations in the BH systems should be a factor of 5-10 lower than that for the NS systems. The X-ray spectrum formed in this region is a result of upscattering of a soft radiation (from a disk and a NS surface) off relatively hot electrons in the boundary layer. We also briefly discuss some alternative QPO models, including a possibility of acoustic oscillations in the boundary layer, the proper stellar rotation, and g-mode disk oscillations.Comment: The paper is coming out in the Astrophysical Journal in the 1st of May issue of 199
    corecore