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ABSTRACT
We consider the electrodynamics of a rotating magnetized neutron star with allowance for the quasiÈ

steady state regime of charged particle ejection from the polar cap into the inner magnetosphere. We
derive basic equations within the framework of a general relativistic formalism and present the analytic
solutions. We demonstrate that the quasiÈsteady state supply of electrons into the region of open Ðeld
lines reduces the total power put into the acceleration of primary particles, although the total power
corresponding to a steady state solution in general relativity is increased compared to the Ñat-space solu-
tion. Also, we illustrate that temporarily modulated ejection of electrons from the stellar surface results
in substantial modulation of an accelerating electric Ðeld and charge density along the open Ðeld lines.
We brieÑy outline the implications of this e†ect for the pulsars.
Subject headings : MHD È pulsars : general È relativity È stars : neutron

1. INTRODUCTION

It is well known that observations of radio pulsars reveal a good deal of quasi-periodic behaviors (microstructure) along
with the so-called moding (see, e.g., et al. and nulling (see et al. and references therein) phenomena forBartel 1982) Deich 1986
the discrete components of an average proÐle. It seems very likely that at least some of these observations may reÑect
complexity of the physical conditions at the stellar surface and quasiÈsteady state character of particle supply into the
magnetosphere of a neutron star. The polar cap heating, outcoming acoustic Ñux, and inhomogeneity in the chemical
composition and physical conditions across the polar cap of a neutron star may trigger and/or modulate the nonstationary
ejection of charged particles into the inner magnetosphere of a neutron star.

Most of the existing pulsar theories exploit as a fundamental assumption the possibility of a steady state supply of charged
particles from a neutron star surface into the stellar magnetosphere. Also, the theories accounting for the negative feedback of
the ejected space charge onto the electric potential drop above the polar cap of a neutron star unavoidably imply that the
charge density of particles ejected from the stellar surface must be precisely limited by the so-called Goldreich-Julian charge
density & Julian Within the framework of such theories it is therefore intrinsically impossible to consider(Goldreich 1969).
any nonstationary regime of ejection of charged particles into the stellar magnetosphere and its e†ect on the electrodynamics
of a neutron star.

In this paper we do not intend to comment on the existing pulsar models. Instead we would like to emphasize that our
knowledge of fundamentals about the pulsar magnetosphere has been boosted by the pioneering works of & JulianGoldreich

& Sutherland and & Scharlemann The subsequent(1969), Sturrock (1971), Mestel (1971), Ruderman (1975) Arons (1979).
achievements in this subÐeld and some new ideas are reviewed by and Although aArons (1991), Michel (1991), Mestel (1992).
viable self-consistent model of a global pulsar magnetosphere is not available at present, it is important that the analysis of a
classical problem (with simpliÐed treatment of the e†ects of an electron-positron plasma) based on the ““ Ðrst-principles ÏÏ
approach (see et al. & Pryce and references therein) provides Ðrm grounds for theMestel 1992 ; Mestel 1985 ; Mestel 1992 ;
construction (albeit in the next millennium) of such a model.

In this paper we attempt to extend the electrodynamics of the inner magnetosphere of a neutron star to include the e†ect of
the quasiÈsteady state supply of charged particles to the domain of open Ðeld lines. We consider the situation where the
number density of physical charges ejected from the polar cap of a neutron star arbitrarily varies with time, even though it
does not exceed the local Goldreich-Julian number density above the stellar surface. We introduce a formalism that may
adequately and consistently treat this e†ect. We do not discuss the problem of closure of the global magnetospheric currents.
Rather we focus on a local analysis, and present the explicit solutions for the electric potential, the component of the electric
Ðeld parallel to the magnetic Ðeld, and the density of charges in the domain of open Ðeld lines in the inner magnetosphere of a
rotating magnetized neutron star. The approach we discuss in this paper potentially enables us to search for the e†ects in
pulsar emission that might be associated with the temporal variation of the physical properties at the surface of a neutron star.
For example, one of the most interesting implications of our study would be the manifestation of neutron star oscillations (see,
e.g., Horn in the electrodynamic properties of a pulsar magnetosphere and the dynamical featuresBoriako† 1976 ; Van 1980)
of discrete pulses.

In we derive general relativistic equations describing electrodynamics of a rotating magnetized neutron star. We rewrite° 2
these equations in the frame of reference corotating with the neutron star surface and reduce them to the form most
convenient for further applications in In we provide general relativistic expressions for the magnetic Ðeld strength° 2.1. ° 2.2
and derive an equation for the Ðeld lines. In we present the general relativistic analog of the Goldreich-Julian charge° 2.3
density. We discuss the space-chargeÈlimited current approximation and justify the assumption of relativistic motion of
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electrons (positrons) in In we introduce the regime of quasiÈsteady state particle Ñow within the domain of open Ðeld° 2.4. ° 3
lines and present corresponding solutions. In we brieÑy discuss some consequences of this regime for pulsars and° 4
summarize our principal conclusions.

2. DERIVATION OF BASIC EQUATIONS

The e†ects of general relativity are very important for the electrodynamics of a neutron star : the dragging of inertial frames
of reference signiÐcantly a†ects the electric Ðeld generated in the vicinity of a rotating magnetized neutron star, while the static
part of the gravitational Ðeld results in additional enhancement of the strength of electric and magnetic Ðelds near a star. Here
we shall therefore present the derivation of general relativistic electrodynamic equations suitable for various neutron star
applications.

The main system of equations describing electrodynamics around a rotating neutron star can be derived in a few di†erent
ways. In this paper we will use the geometrical point of view (see, e.g., Thorne, & Wheeler In the geometricalMisner, 1973).
language the electromagnetic Ðeld is described by the antisymmetric tensor (Maxwell tensor) of the second rank or by the
2-form F, the introduction of which does not require coordinates. The geometrical approach is not only simpler than that of
3 ] 1 (““ space plus time ÏÏ ; see Price, & Macdonald but it also allows us to derive the equations in the 3 ] 1Thorne, 1986),
form much more easily than the 3 ] 1 point of view itself does. In geometrical form the Maxwell equations read

dF \ 0 , (1)

d*F \ 4n
c

*J , (2)

where d is the operator of external di†erentiation (see, e.g., et al. *F is the tensor dual to theFlanders 1963 ; Misner 1973),
tensor F, with

*Fab\ 12Fklvklab , (3)

where is an axial Levi-Civita tensor that can be produced with the aid of the antisymmetric 4-index Levi-Civita symbolvklab(we shall use the lower indices for it, with For the spacetime with a metric we haveeabcd e0123 \ ]1). gkl

vabcd \ [ 1

Jo g o
eabcd , vabcd \ Jo g oeabcd , (4)

where g 4 det gkl.In J \ (oc, j) is the vector of ““ 4-current,ÏÏ o is the electric charge density, and j is the vector of the electricequation (2),
current density. It is important that the form of equations and does not depend on the choice of a coordinate basis.(1) (2)

The Maxwell tensor can be represented as a sum of the antisymmetric tensor products (““ external products ÏÏ) :

F \ 12Fab dxa–dxb , (5)

where – is the symbol for external product, and dxa–dxb are the ““ basis 2-forms ÏÏ of a given local coordinate basis. Since F is
invariant, we can derive the transformation equations for in di†erent coordinate systems usingFab equation (5).

Let us consider the metric of an asymptotically Ñat, stationary, axially symmetric spacetime around a rotating gravitating
body (see, e.g., & Lifshitz In spherical polar coordinates x0\ ct, x1\ r, x2\ h, and x3\ /, we haveLandau 1975).

ds2\ A2(c dt)2[ B2(dr)2[ C2(dh)2[ D2(d/[ u dt)2 , (6)

where is the so-called gravitational redshift function, C\ r, D\ r sin h, u\ 2GJ/c2r3,A\B~1\ (1 [ r
g
/r)1@2 r

g
\ 2GM/c2

is the gravitational radius of a body (neutron star) of mass M, J is the angular momentum of a neutron star, c is the speed of
light, and G is the gravitational constant. The metric in is nothing else but the approximation of the Kerr metricequation (6)
when the ratio is small. The presence of the nondiagonal component in the metric in results in theJ/Mcr

g
equation (6)

well-known e†ect of dragging of inertial frames of reference (the Lense-Thirring e†ect) with the angular velocity

x\ 2GJ
c2r3 . (7)

Since one can always locally transform the spacetime metric into the Minkowski metric, in any point of space one always can
Ðnd the orthonormal system of basis vectors and 1-forms not necessarily coinciding with the vectors tangent to the coordinate
lines and with the gradients to the coordinate surfaces, respectively. These basis vectors and 1-forms are usually denoted as ekuand respectively, where the caret indicates that the system is orthonormal. Let us consider the orthonormal basis ofxku ,
1-forms, corresponding to the zero angular momentum observer (ZAMO; see, e.g., et al. for the introduction andThorne 1986
discussion) in the geometry described by the metric in equation (6) :

x•\ Ac dt , x“\ B dr , xg\ C dh , xÍ\ D(d/[ u dt) . (8)

The tensor F can now be expressed as

F \ 12 f
cd

xc–xd , (9)
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where are the components of the Maxwell tensor in the basis displayed in equations The components in orthonor-f
cd

(8). f
cdmal bases are usually referred to as physical components, since they are reduced to ordinary components of vector analysis in

a Ñat space. The coordinate basis corresponding to a chosen coordinate system (t, r, h, /) has a dual basis of 1-forms :ea
xt\ c dt , xr \ dr , xh\ dh , xÕ\ d/ . (10)

Substituting the relationships in equations in and comparing the result with we get the(8) equation (9) equation (5),
relationships between the components of the Maxwell tensor in the bases of 1-forms in equations and(8) (10) :

f
•“
\ A~1B~1(F

tr
[ uF

rÕ) , (11a)

f
•g

\ A~1C~1(F
th[ uFhÕ) , (11b)

f
•Í\ A~1D~1F

tÕ , (11c)

f
“g

\ B~1C~1F
rh , (11d)

f
“Í \ B~1D~1F

rÕ , (11e)

f
gÍ \ C~1D~1FhÕ , (11f )

F
tr
\ ABf

•“
] uBDf

“Í, (12a)

F
th\ ACf

•g
] uCDf

gÍ , (12b)

F
tÕ\ ADf

•Í , (12c)

F
rh\ BCf

“g
, (12d)

F
rÕ \ BDf

“Í , (12e)

FhÕ \ CDf
gÍ , (12f )

Let us calculate the tensor

*F \ 12*Fkl dxk–dxl , (13)

where

*Fkl\ 12Fabvabkl \ 12gacgbdFcd v abkl\ 12Jo g oeabkl gacgbdFcd . (14)

Taking into account equations we get(12),

*F
tr
\ f

gÍ] A~1wf
•g

, (15a)

*F
th\ [r(Af

“Í ] wf
•“
) , (15b)

*F
tÕ\ Ar sin hf

“g
, (15c)

*F
rh\ [A~1rf

•Õg , (15d)

*F
rÕ \ A~1r sin hf

•g
, (15e)

*FhÕ \ [r2 sin hf
•“

, (15f )

where w\ o w o, w \ um, and m 4 r sin h is the Killing vector corresponding to the axial symmetry.eÍTo complete the formulation, we should present the expression for the 4-current :

*J \ ocBCD(dr–dh–d/[ u dr–dh–dt) [ A( j
“
CD dh–d/–dt [ j

g
DB dr–d/–dt ] jÍCB dr–dh–dt) . (16)

Now let us consider the physical components of the Maxwell tensor f~c :

f~c\a
0

[E
“

[E
g

[EÍ

E
“

0
BÍ

[B
g

E
g

[BÍ
0
B
“

EÍ
B
g

[B
“

0
b , (17)

where the physical components of vectors E and B correspond to the ““ ZAMO ÏÏ in a local orthonormal basis in spherical
geometry :

e
“
\ Ae

r
\ A

L
Lr

, e
g
\ 1

r
eh\

1
r

L
Lh

, eÍ\ 1
r sin h

eÕ\ 1
r sin h

L
L/

. (18)

Inserting in and making use of equations we get the Ðrst couple of Maxwell equations :equation (5) equation (1) (12),

$ Æ B \ 0 , (19)

$ Â (aE) \ [1
c
ALB

Lt
]Lum

B
B

. (20)
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From taking into account expressions (13) and (16), we get the second couple of Maxwell equations :equation (2),

$ Æ E \ 4no , (21)

$ Â (aB) \ 1
c
ALE

Lt
]Lum

E
B

] 4n
c

aj , (22)

where (4A, as denoted in the metric given in is the charge of a particle, is thea \ (1 [ r
g
/r)1@2 eq. [6]) ; o \ ;

k
q
k
n
k
, q

k
n
kparticle number density, and summation is over all species ; is the Lie derivative along the vector um.LumNote that

Lum
B 4 [$ Â (w Â B) , (23)

Lum
E 4 [[$] (w Â E) [ w($ Æ E)] . (24)

Equations are fully identical with the equations obtained within the framework of the 3 ] 1 formalism (see, e.g.,(19)È(22)
et al. Note that all electrodynamic quantities (E, B, j, and o) in these equations are such as measured by ZAMO.Thorne 1986).

In addition, the above system of equations must be supplemented with the charge continuity equation (which is a conse-
quence of eq. [22]) :

Lo
Lt

] um Æ $o \ [$ Æ (aj) . (25)

Here and in what follows it is implied that the standard operators of vector analysis (gradient, divergence, and curl) should be
taken in corresponding curvilinear coordinates (see the basis given by eqs. [18]).

2.1. Electrodynamic Equations in the Frame of Reference Corotating with a Neutron Star
For our further purposes it is convenient to work in the coordinate system corotating with a star. If a neutron star rotates

with an angular velocity X relative to the distant observer, then in the corotating frame, together withequation (20), equation
takes the form(23),

$ Â
C
aE [ 1

c
(w [ u) Â B

D
\ [ 1

c
LB
Lt

, (26)

where u \ )r sin h eÍ.We assume that the magnetic Ðeld of a neutron star is stationary in the corotating frame, which implies that inequation (26)
we can set LB/Lt 4 0. Then from it follows thatequation (26)

aE [ 1
c

(w [ u) Â B \ [$' , (27)

where ' is a scalar electric potential.
Taking the divergence of and making use of we getequation (27) equation (21),

$ Æ
C1
a

$'] 1
ac

(u [ w) Â B
D

\ [4no . (28)

Finally, to the system of basic electrodynamic equations presented above, one should add the general relativistic equation
of motion for a particle of charge q (see & Macdonald & ThorneThorne 1982 ; Macdonald 1982) :

a~1 d
dt

p \ kcg ] q
A

E ] ¿
c

Â B
B

] f , (29)

where L/Lt ] um Æ $ is the global time derivative along ZAMO trajectories, is thed/dt 4 L ] um Æ $] a¿ Æ $, p \ ck¿
momentum of a particle, c\ (1 [ v2/c2)~1@2 is the particle Lorentz factor, k is the rest mass of a particle, f is external force
other than electromagnetic, and g is the gravitational acceleration. It must be pointed out that in the present problem
acceleration due to gravity may be justiÐably ignored.

We shall solve equations and for a given structure of the external magnetic Ðeld of a neutron star. The latter should(23) (28)
be determined from the solution of equations and Note that in the problem under consideration is(19) (22). equation (22)
simply reduced to $ Â (aB) \ 0, since the terms on its right-hand side are of order of (here R is the radius of a[R~1()R/c)2B
neutron star) within the light-cylinder radius and can be neglected. In other words, we assume that in the innerRLC\ c/)
magnetosphere of a neutron star the e†ects of the magnetospheric currents on the external magnetic conÐguration of a
neutron star are negligibly small.

2.2. External Magnetic Field of a Neutron Star
We assume that the external magnetic Ðeld of a neutron star may be well represented by the dipole component (in magnetic

polar coordinates r, 0, and r) :

Bd \ [ 1
2nr sin 0

erv Â $[((r) sin2 0] , (30)
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where

((r) 4
P

B Æ dR\
P
0

nP
0

2n
B

“
r2 sin 0 d0 dr (31)

is the magnetic Ñux through the magnetic hemisphere of radius r.
The solution of $ Â (aB) \ 0 requires the following form for the function ( :

((r) \ nR2B0
f (g)
f (1)

1
g

, f (g) \ [3
Ag
e
B3C

ln
A
1 [ e

g
B

] e
g
A
1 ] e

2g
BD

, (32)

where is the normalization value of the magnetic Ðeld strength at the stellar surface, and g 4 r/R. When e/g > 1,B0 e 4 r
g
/R,

then f (g) B 1 ] (3/4)e/g ] (3/5)(e/g)2] É É É .
Now the explicit expressions for the physical components of the magnetic Ðeld of a neutron star can be written as

B
“
d4

1
n

(
r2 cos 0 \ B0

f (g)
f (1)

1
g3 cos 0 , (33)

B’v
d 4 [ a

2nr
L(
Lr

sin 0 \ 1
2

B0 a
C
[2

f (g)
f (1)

] 3
f (1)(1[ e/g)

D 1
g3 sin 0 . (34)

Note that the solution of this form was Ðrst derived by & Ozernoy Later on, this solution was reproduced inGinzburg (1964).
a number of papers (see, e.g., & Shapiro Muslimov & Tsygan The general solution for arbitraryWasserman 1983 ; 1986, 1990).
multipoles is presented by & Cohen and by & Tsygan in terms of the Legendre functions ofAnderson (1970) Muslimov (1986)
the second order and hypergeometric functions, respectively.

Along with the variable g we shall use the variable m \ 0/# (0 ¹ m ¹ 1) labeling the open Ðeld lines. Here # is the polar
angle (magnetic colatitude) of a radius vector sliding along the last open Ðeld line. Then the family of the magnetic Ðeld lines
will be described by the equation

((r) sin2 0 \ ((R) sin2 00, (35)

where is the magnetic colatitude at the footpoint of a Ðeld line at the stellar surface. Thus, using expression (32), we can00write the general relativistic formula for the open magnetic Ðeld line :

0 4 m# \ sin~1
GC

g
f (1)
f (g)
D1@2

sin (m#0)
H

, (36)

where is the magnetic colatitude at the footpoint of a last open Ðeld line deÐned as follows. For the last open Ðeld line the#0radius vector makes an angle 0 \ n/2 at the light cylinder, so that from we obtainequation (36) #04 sin~1 [R/RLC f (1)]1@2,
since f (gLC) \ 1 ] O(r

g
/RLC) B 1.

2.3. Goldreich-Julian Charge Density in General Relativity
can be rewritten as (cf. & TsyganEquation (28) Muslimov 1992)

$ Æ
A1
a

$'
B

\ [4n(o [ oGJ) , (37)

where

oGJ 4 [ 1
4nc

$ Æ
C1
a

(u [ w) Â B
D

\ [ 1
4nc

$ Æ
C1
a
A
1 [ i

g3
B

u Â B
D

(38)

is the general relativistic analog of the Goldreich-Julian & Julian charge density. Here the parameter i 4 eb,(Goldreich 1969)
where I is the moment of inertia of a neutron star, andb 4 I/I0, I0\MR2.

In this paper the analysis will be limited (the natural limit may be set up, e.g., by the process of production of an
electron-positron plasma) by the region of open Ðeld lines lying well within the light-cylinder radius, and we can therefore use
a small-angle approximation, 0 > 1. In this approximation, we get

oGJ ^ [ )B0
2ncag3

f (g)
f (1)

CA
1 [ i

g3
B

cos s ] 3
2

H(g)m# sin s cos r
D

, (39)

where H(g) \ e/g [ i/g3] (1 [ 3e/2g ] i/2g3)/[ f (g)(1[ e/g)], s is the angle between the magnetic and spin axes of a
neutron star, and r is the magnetic azimuthal angle.

2.4. Space-ChargeÈlimited Current Approximation
In most studies of a pulsar magnetosphere allowing for the Ñow of charged particles in the domain of open Ðeld lines, the

so-called space-chargeÈlimited current (Ñow) approximation is exploited. The adequacy of this approximation was addi-
tionally reinforced by the Ðnding that the work function of a neutron star surface with the canonical value of the magnetic
Ðeld strength of 1012 G is D100 eV (Jones Langanke, & Koonin Koonin, &1985, 1986 ; Neuhauser, 1986 ; Neuhauser,
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Langanke rather than D1 keV which implies signiÐcantly facilitated ejection of charges from the1987) (Ruderman 1971),
surface. The regime of the space-chargeÈlimited current, well known from the pioneering studies of diodes, has been intro-
duced in the theory of pulsars by and then extensively discussed by many authors (see, e.g.,Sturrock (1971), Michel 1974 ;

& Ruderman Arons, & Scharlemann & ScharlemannTademaru 1974 ; Cheng 1977 ; Fawley, 1977 ; Arons 1979 ; Arons 1981).
It is worthwhile to recall here the physical basis for space-charge limitation of current (see, e.g., Studer, & WhinneryPederson,

It is known from the operation of a diode that, as the temperature of a cathode (emitter) is increased, electrons are1966).
emitted and a negative space charge appears in the region between cathode and anode. This space charge depresses the
potential, and for increased electron emission the space charge becomes sufficient to lower the electric Ðeld at the cathode to
zero. Thus, because of the negative charge above the cathode, only a limited maximum current can Ñow for a given voltage.
This regime of operation is called space-charge limitation of current. Within the context of pulsar electrodynamics this regime
implies that at the stellar surface (at r \ R) the condition holds, where is the electric Ðeld component parallel to theE

A
\ 0 E

Amagnetic Ðeld. Also, within this approximation the charged particles are treated as a cold, dissipation-free gas.
In this paper we investigate the regime where the current has a steady state component and, superimposed on it, a

small-amplitude alternating component. This regime still implies the space-charge limitation of current and zero steady state
electric Ðeld at the stellar surface. The electric potential ' at the stellar surface is equal to zero (see However, the value of° 3.2).
the alternating component of the electric Ðeld parallel to the magnetic Ðeld may not vanish at the stellar surface and is
determined by the dynamics of ejection of charges from the surface. The new and important feature of this regime is that it
allows the nonÈsteady state ejection of charged particles from the stellar surface and their modulated Ñow in the domain of
open Ðeld lines.

Now let us estimate the characteristic height above which electrons become relativistic. Near the very surface the electrich
cpotential where and h is the height above the stellar surface. From the condition'D'0(h/R)2, '0\ ()R2/c)B0 o e o'Dk

e
c2,

we Ðnd that cm, where P is the pulsar spin period in seconds and G. This estimate means thath
c
D 3(P/B12)1@2 B12 \ B0/1012

we can adequately treat electrons (positrons) as moving relativistically from the very surface of a neutron star (cf. Sturrock
1971).

3. QUASIÈSTEADY STATE REGIME OF CHARGED PARTICLE FLOW

Consider the Ñow of relativistic particles in the region of open Ðeld lines. We assume that the density of charged particles
depends on time, and that the time dependence is determined by the nonstationarity of the very process of injection of
particles into the region of open Ðeld lines. The general expression for the particle space charge density can be written as

o(g, m, t)\ o(g, m)[1 ] F(m, g, t)] , (40)

where is the ““ steady state ÏÏ part of the solution. We will assume F(m, g, t) \ a(m)x(g, t), where a and x are some functions too
be speciÐed at g \ 1. Separability in means that the perturbation of particle supply along the Ðeld lines occursequation (40)
coherently, which may not be the case in general. Note that the function a(m) characterizes the distribution of particle charge
density across the polar cap, and the function x(g, t) characterizes time-dependent distribution of particle charge density along
each individual magnetic Ðeld line.

From the charge conservation we getequation (25)

o6 a
Lx
Lt

] cB Æ $
Ga
B

o6 [1 ] a(m)x(g, t)]
H

\ 0 . (41)

The steady state solution of implies that on a Ðeld line we have (see eqs. andequation (25) [30] [35])

ao6
B

\F(m) , (42)

where F is some function of m alone and is determined from the boundary condition at the stellar surface (e.g., a linear
function, where and are some constants). Then, in a small-angle approximation, reduces toa1 ] a2 m, a1 a2 equation (41)

Lx
Lt

] a2
A c
R
B Lx

Lg
\ 0 , (43)

where additional a comes from the radial gradient in curvilinear coordinates (see eqs. The solution of this equation is an[18]).
arbitrary function of the argument (characteristics)

t@ \ t [ R
c
P
1

g
a~2 dg@ \ t [ R

c
C
g [ 1 ] e ln

Ag [ e
1 [ e

BD
.

As a special illustrative case, let us assume the harmonic functional dependence of t@, where is the angularsay, cos (u0 t@), u0frequency with which charged particles are ejected along each Ðeld line from the stellar surface. Then for the solution (40) we
can write

o \ o6 (g, m)[1 ] a(m) cos (u0 t@)] , (44)

where a(m) is a function speciÐed by the process of the nonÈsteady state supply of plasma into the region of open magnetic Ðeld
lines in the inner magnetosphere. Note that in the most general case the above expression should contain a Fourier integral
over u0.
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Using equations and for guidance, we shall search for the solution for the function o in the following form:(33) (39)

o(g, m, t@)\)B0
2nc

1
ag3

f (g)
f (1)

G
[[A1(m) [ A2(m) cos (u0 t@)] cos s [

A3
2
B
[D1(m) ] D2(m) cos (u0 t@)] sin s cos r

H
. (45)

Here and are the functions characterizing the steady state solution, while and are, in general, unknownA1(m) D1(m) A2(m) D2(m)
functions characterizing the amplitudes of the nonÈsteady state components of the charge density. The form of these
functions, however, may be reasonably constrained under some simplifying assumptions (see below).

Let us introduce the auxiliary function [where then in a small-angle approximation from!\ g'/'0 '0\ ()R/c)RB0] ;
we getequation (37)

L2!
Lg2 ] p2(g)

1
m
C L
Lm
A
m

L
Lm
B

] 1
m

L2
Lr2
D
!\ [ 2

g2(1 [ e/g)
f (g)
f (1)

GC
1 [ i

g3[ A1(m)[ A2(m) cos (u0 t@)
D

cos s

] 3
2

[H(g)m#(g) [ D1(m) [ D2(m) cos (u0 t@)] sin s cos r
H

, (46)

where p(g) 4 [g#(g)(1[ e/g)1@2]~1.
We shall look for the solution of this equation in the form

!(g, m, t)\ P(g, m, t) cos s ] Q(g, m, t) sin s cos r , (47)

where P and Q are the functions to be obtained from the following equations :

C L2
Lg2] p2(g)

1
m

L
Lm
A
m

L
Lm
BD

P\ [ 2
g2(1 [ e/g)

f (g)
f (1)

C
1 [ i

g3 [ A1(m) [ A2(m) cos (u0 t@)
D

, (48)

G L2
Lg2] p2(g)

1
m
C L
Lm
A
m

L
Lm
B

[ 1
m
DH

Q\ [ 3
g2(1 [ e/g)

f (g)
f (1)

[H(g)m#(g) [ D1(m) [ D2(m) cos (u0 t@)] . (49)

3.1. Boundary Conditions and Method of Solution
We shall solve the system of equations and subject to the appropriate boundary conditions. First, following(48) (49)

& Julian we assume that the surface of a polar cap and that formed by the last open Ðeld lines can be treatedGoldreich (1969),
as electric equipotentials, and we therefore adopt the condition '\ 0 at these surfaces. Second, we should require (cf. the
condition imposed by the space-charge limitation) that the steady state component of the electric Ðeld parallel to the magnetic
Ðeld vanishes at the polar cap surface, The oscillating component of the electric Ðeld parallel to the magneticE1

A
(r \R) \ 0.

Ðeld, is a time-dependent function determined by the charged particle ejection from the surface.E
A
osc(r \R),

The system of equations and can be solved by representing the functions P and Q as Fourier-Bessel series :(48) (49)

P(g, m, t) \ ;
i/1

=
P
i
(g, t)J0(ki m) , P

i
(g, t) 4

2
[J1(ki)]2

P
0

1
mP(g, m, t)J0(ki

m)dm , (50)

Q(g, m, t) \ ;
i/1

=
Q

i
(g, t)J1(k

8
i
m) , Q

i
(g, t) 4

2
[J2(k

8
i
)]2
P
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1
mQ(g, m, t)J1(k

8
i
m)dm , (51)

where and are the positive zeros of the functions and respectively, with and The functions Pk
i

k8
i

J0 J1, k
i`1 [ k

i
k8
i`1 [ k8

i
.

and Q then automatically satisfy the condition of equipotentiality at the surface formed by the last open Ðeld lines (at m \ 1).
The equations for the Fourier-Bessel components, and areP

i
Q

i
,

C d2
dg2[ c

i
2(g)
D
P

i
\ [ 2

g2(1 [ e/g)
f (g)
f (1)
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g3
BC 2

k
i
J1(ki

)
D

[ A1i [ A2i cos (u0 t@)
H

, (52)
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dg2[ c8

i
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D
Q

i
\ [ 3

g2(1[ e/g)
f (g)
f (1)

GC 2
k8
i
J2(k

8
i
)
D
H(g)#(g) [ D1i [ D2i cos (u0 t@)

H
, (53)

where and (p is deÐned just followingc
i
\ k

i
p c8

i
\ k8

i
p eq. [46]).

3.2. T he Solution near the Stellar Surface, at z\ g [ 1 > 1
Near the stellar surface, when z\ g [ 1 > 1, we can linearize and easily solve equations and using appropriate(52) (53)

boundary conditions. The conditions of equipotentiality of the stellar surface and zero steady state electric Ðeld at r \ R
imply that

P
i
(z\ 0)\ Q

i
(z\ 0) \ 0 , (54)

and

P1
i
(z\ 0) 4

AdP1
i

dz
B K

z/0
\ 0 , Q1

i
(z\ 0) 4

AdQ1
i

dz
B K

z/0
\ 0 . (55)
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Here the overbars denote the time-averaged part.
Then the solution of equations and is(52) (53)

P
i
(z) \ 6i

1 [ e
1

c
i
3(1)

2
k
i
J1(ki

)
[e~ci(1)z ] c

i
(1)z[ 1]] 2

1 [ e
A2i
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2 [e~ci(1)z cos (u0 t) [ cos (u0 t [ tz)] , (56)
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(z) \ 3

1 [ e
#0 d(1)H(1)

1
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8
i
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[e~cz i(1)z ] c8
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(1)z[ 1][ 3

1 [ e
D2i
!3
i
2 [e~cz i(1)z cos (u0 t) [ cos (u0 t [ tz)] , (57)

where

d 4 d ln (H#)/dg \ M[(2e [ 4i/g2)/g2] 3[(e [ i/g2)/g [ (4/3 [ e/g [ 3/2f )(1[ 3e/2g ] i/2g3)/(1 [ e/g)]/[(g [ e)f ]N/H(g) ,

t\ u0R/[c(1 [ e)] ,

!
i
24 c

i
2(1)] t2\ f (1)(c/)R)Mk

i
2] ()R/c)3(u0/))2e2/[ f (1)(1[ e)]N/(1 [ e) ,

and

!3
i
24 c8

i
2(1)] t2\ f (1)(c/)R)Mk8

i
2] ()R/c)3(u0/))2e2/[ f (1)(1[ e)]N/(1 [ e) .

The and are deÐned afterc
i

c8
i

equation (53).
For the sake of illustration, in this section we shall assume that and which means that we will restrict!

i
Bc

i
(1) !3

i
B c8

i
(1),

ourselves to the case where i.e. where the particles ejection from the surface is modulated with theu0> )(RLC/R)3@2,
frequency s)1@2 MHz. Also, in what follows we shall assume that and wherel0> (P/1 A2(m) \ a \ constant D2(m) \ dm,
d \ constant. Thus our choice of functional dependences of and means that the nonÈsteady state and steady stateA2(m) D2(m)
components [since and see eqs. and of the charged particle supply intoA1(m)\ constant, D1(m) \ constant] m ; (58) (59)]
the region of open Ðeld lines have similar proÐles as a function of m across this region. In other words, the nonÈsteady
state particle supply along the magnetic Ðeld lines occurs in proportion to the intensity of the steady state particle Ñow.
Finally, from the solutions presented below (see, e.g., the constants a and d can be deÐned as the amplitudes of theeq. [71])
variation of the charge density about the Goldreich-Julian charge density at the stellar surface, normalized by the quantity

Now we can calculate)B0/[2nc(1 [ e)1@2].
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The steady state amplitudes and are, respectively,A1 D1

A1(m) 4 ;
i/1

=
A1iJ0(ki

m) B 1 [ i (58)

and

D1(m)B H(1)#0m . (59)

By performing inverse Fourier-Bessel transformations, we get the following expressions for the functions P and Q :
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Now we can present the general expression for the number density of charged particles,

o(g, m, t@)\ )B0
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ag3

f (g)
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Thus,
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where and are the steady state and oscillating components, respectively. These components readE1
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At the stellar surface,

E
A
osc(g \ 1)\ 1

2
'0
R

#02 t
G
a
C
(1 [ m2) sin (u0 t) ] cos (u0 t) ;

i/1

= 8J0(ki
m)

k
i
2 J1(ki

)
D

cos s

] 3
4

d
C
m(1 [ m2) sin (u0 t) ] cos (u0 t) ;

i/1

= 16J1(k
8
i
m)

k8
i
2 J2(k

8
i
)
D

sin s cos r
H

. (66)

3.3. T he Solution at Distances Greater than the Polar Cap Size and Smaller than the L ight-Cylinder Radius
Let us now consider the solution in the case where so that and#0> g [ 1 >RLC/R, o d2P
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and
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8
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Q(g, m, t@) 4 ;
i/1

=
Q

i
(g, m)J1(ki m) \ 38g#02[H(g)#(g) [ H(1)#0[ d cos (u0 t@)]m(1 [ m2) . (70)

Note that the obtained solutions (60) and (61) match with solutions (68) and (70) at g [ 1 D 1.
From equations and one can see that at r \ R the e†ective charge density is(39) (62)

oeff 4 o [ oGJ \ [ )B0
2nc(1[ e)1@2 (a cos s ] dm sin s cos r) cos (u0 t) . (71)

From this equation we see that at r \ R, while we have assumed the constant electric potential and the zero steadyoeff D 0
state component of the electric Ðeld at r \ R. The value of the oscillating component of the electric Ðeld at r \ R (seeE1

A
\ 0

is determined by the oscillating component of charge density at r \ R (see This is one of the principaleq. [66]) eq. [62]).
results of the present analysis and is a consequence of our solutions, which explicitly imply the dynamical regime of the
space-charge limitation of current. That is, the solutions describe the response of the potential drop above the surface to a
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change in supply of charge at the surface. This response is not instantaneous, as assumed in previous steady state treatments,
but has a delay due to the travel time of the charges. Thus, it is not surprising that oscillations in the input charge density at
r \ R will manifest themselves as a similar modulation of the electric potential at r [ R. Physically this means that the charge
density of particles supplied from the stellar surface into the domain of open Ðeld lines may Ñuctuate, with the total density of
charges at any distance between the stellar surface and a pair formation front being limited (owing to the negative feedback
between the electric potential drop and a net space charge) by the local Goldreich-Julian charge density. It is important that
the condition at the stellar surface may now modulate (owing to the time retardation) the distribution of the space charge in
the domain of open Ðeld lines. From the above solutions for any obliquity, one can see that, in the inner magnetosphere of a
neutron star, the electric potential so that the accelerating electric Ðeld and hence the energies'\ anr2#2(r)(o [ oGJ)(1[ m2),
of primary particles may indeed become modulated by the ““ surface.ÏÏ Our solutions, after necessary adjustment to the more or
less realistic physical situation of a pulsar, have potential for probing the dynamical e†ects in the innermost magnetosphere of
a neutron star.

For the electric Ðeld component parallel to the magnetic Ðeld can be expressed as#0> g [ 1 >RLC/R

E
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\ [R
L'
Lg
K
m/constant

\ [Evac #02
GC 3i

2g4[ 1
4
Au0R

c
B
a sin (u0 t@)

D
(1 [ m2) cos s

] 1
8
C
3H(g)#(g)d(g) [ u0R

c
d sin (u0 t@)

D
m(1 [ m2) sin s cos r

H
, (72)

where is the characteristic value of the electric Ðeld generated near the surface of a neutron star rotating inEvac 4 ()R/c)B0vacuum (see Deutsch 1955).

4. DISCUSSION AND CONCLUSIONS

We have considered general relativistic electrodynamics of an inner magnetosphere of a neutron star, allowing for the
possibility of a quasi-steady supply of charged particles into the region of open Ðeld lines. In this paper we do not discuss the
e†ects associated with the pair formation above the stellar surface, and it will be analyzed in detail in a separate publication.
The general relativistic treatment is essential for the problem under discussion because the e†ect of dragging of inertial frames
of reference results in a signiÐcant contribution to the magnitude of an accelerating electric Ðeld. Our analysis demonstrates
the principal possibility of a quasi-steady regime, and it may be potentially used for a number of applications in the theory of
pulsars (e.g., in the consistent treatment of the back reaction of electron-positron pairs on the accelerating electric Ðeld ; see

& HardingDaugherty 1996).
Let us calculate the total power carried away by relativistically moving primary particles :

L
p
\ 2([c

P
o' dS) , (73)

where the overbar denotes the averaging over time and the integration is taken over the spherical surfaceT0\ 2n/u0,bounded by the last open Ðeld lines.
For the nearly aligned rotator (s B 0), the ““ general relativistic ÏÏ part of the solution dominates, and, using the above

solutions, we can write
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Thus, we get
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. (75)

In the steady state regime when a2> 1 we get
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p
)max \ 1

4
)4B02R6
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i(1[ i)E0 rot , (76)

where

E0 rot 4
1
6

)4B02R6
c3f 2(1)

\ 1
f 2(1)

(E0 rot)SR . (77)

Here is the standard expression for the magneto-dipole losses in special relativity. Given (where(E0 rot)SR i B 0.15I45/R63g cm~2, cm), we estimate thatI45\ I/1045 R6 \R/106
(L

p
)max B 0.22I45 R6~3(1 [ 0.15I45R6~3)E0 rot . (78)

The regime of quasi-steady supply of charged particles into the inner magnetosphere reduces the efficiency of particle
acceleration which is consistent with the regime of space-charge limitation of current. Now let us compare the relative
contributions of the general relativistic and classic terms in the above solutions. For the orthogonal rotator (s \ n/2), when
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g ? 1 we can write

L
p
B

9
32
A H(1)

Jf (1)

)R
c

g1@2 [ d2
B
E0 rot. (79)

At the small distances from the star (e.g., at g D 10È30) we have

L
p
(s \ 0)

L
p
(s \ n/2)

B
8
n

Jf (1)
H(1)

i(1 [ i)
104
g1@2 PB 5

103
g1@2 P , (80)

where P is the pulsar spin period.
We may also write that

L
p
(s \ 0)max

L
p
(s \ n/2)max

B
16J3

3J2n
Jf (1)
H(1)

i(1 [ i)102P1@2 B 70P1@2 . (81)

In the derivation of expressions (78), (80), and (81) we used the values of i B 0.15 and e B 0.4, and f (1)B 1.44(I45 \ 1 R6\ 1),
(M \ 1.4M

_
).

Thus our estimates clearly show that the general relativistic contribution is dominant for a relatively wide range of
parameters. For example, for a spin period of 0.1 s, the general relativistic term dominates the classic term for the inclination
angles 0¹ s [ 85¡.

Our solutions for the electric Ðeld, in the steady state, have some signiÐcant implications for pulsar polar cap models. These
models assume that charged particles are accelerated above the polar caps, initiating pair cascades through one-photon pair
creation of photons from curvature radiation & Harding or inverse Compton radiation & Sturner(Daugherty 1982) (Dermer

Using estimates of the accelerating potential derived by due to Ðeld line curvature in Ñat space, the total1994). Arons (1983),
energy gained by the particles was not sufficient to account for the observed Ñux from many c-ray pulsars unless very small
emission solid angles were assumed. Furthermore, the acceleration occurred only over half of the polar cap, on those
(favorably curved) Ðeld lines that curved toward the rotation axis. The electric Ðeld induced by inertial frame dragging
operates on all Ðeld lines and is much higher than the Ðeld due to Ðeld line curvature alone. Thus, the potential drop at the
pair formation front, and the total energy gained by particles in the open Ðeld region, is larger & Muslimov(Harding 1997).
The efficiency is straightforward to calculate, being simply the total power gained by the primary charges (with the potential
in replaced by the potential at the pair formation front) as a fraction of the spin-down power Sinceeq. [73] (Harding 1981).
the general relativistic contribution to the electric Ðeld depends on cos s, pulsars having smaller obliquity s will have larger
accelerating potential drops and thus may be favored for c-ray pulsar emission This would support the(Muslimov 1995).
single-pole c-ray pulsar models (Daugherty & Harding & Sturner which require small obliquity.1994, 1996 ; Dermer 1994),

Our general conclusions from solutions for the quasi-steady regime can be summarized as follows :

1. The quasi-steady regime of particle ejection from the stellar surface reduces the total power carried away by relativistic
primary particles relative to the steady regime.

2. The Ñuctuation of the charge density of particles ejected from the stellar surface modulates the particle energy along a
Ðeld line.

3. The inhomogeneity of the physical conditions at the stellar surface may substantially a†ect the global electrodynamics
within the inner magnetosphere of a neutron star.

In a future paper & Muslimov we plan to explore the location of the pair formation front, the distance(Harding 1997),
above the polar cap where electron-positron pair production shorts out the parallel electric Ðeld and thus determines the
potential drop. The solutions presented in this paper also allow an investigation of the stability of the acceleration of charged
particles above the polar caps.

We thank the referee Leon Mestel for many valuable comments that greatly improved our manuscript. A. K. H.
acknowledges support through a NASA Astrophysics Theory Grant.
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