214 research outputs found

    Establishment of Clonal MIN-O Transplant Lines for Molecular Imaging via Lentiviral Transduction & In Vitro Culture

    Get PDF
    As the field of molecular imaging evolves and increasingly is asked to fill the discovery and validation space between basic science and clinical applications, careful consideration should be given to the models in which studies are conducted. The MIN-O mouse model series is an established in vivo model of human mammary precancer ductal carcinoma in situ with progression to invasive carcinoma. This series of transplant lines is propagated in vivo and experiments utilizing this model can be completed in non-engineered immune intact FVB/n wild type mice thereby modeling the tumor microenvironment with biological relevance superior to traditional tumor cell xenografts. Unfortunately, the same qualities that make this and many other transplant lines more biologically relevant than standard cell lines for molecular imaging studies present a significant obstacle as somatic genetic re-engineering modifications common to many imaging applications can be technically challenging. Here, we describe a protocol for the efficient lentiviral transduction of cell slurries derived from precancerous MIN-O lesions, in vitro culture of “MIN-O-spheres” derived from single cell clones, and the subsequent transplantation of these spheres to produce transduced sublines suitable for optical imaging applications. These lines retain the physiologic and pathologic properties, including multilineage differentiation, and complex microanatomic interaction with the host stroma characteristic of the MIN-O model. We also present the in vivo imaging and immunohistochemical analysis of serial transplantation of one such subline and detail the progressive multifocal loss of the transgene in successive generations

    Microscopy with ultraviolet surface excitation for rapid slide-free histology.

    Get PDF
    Histologic examination of tissues is central to the diagnosis and management of neoplasms and many other diseases, and is a foundational technique for preclinical and basic research. However, commonly used bright-field microscopy requires prior preparation of micrometre-thick tissue sections mounted on glass slides, a process that can require hours or days, that contributes to cost, and that delays access to critical information. Here, we introduce a simple, non-destructive slide-free technique that within minutes provides high-resolution diagnostic histological images resembling those obtained from conventional haematoxylin-and-eosin-histology. The approach, which we named microscopy with ultraviolet surface excitation (MUSE), can also generate shape and colour-contrast information. MUSE relies on ~280-nm ultraviolet light to restrict the excitation of conventional fluorescent stains to tissue surfaces, and it has no significant effects on downstream molecular assays (including fluorescence in situ hybridization and RNA-seq). MUSE promises to improve the speed and efficiency of patient care in both state-of-the-art and low-resource settings, and to provide opportunities for rapid histology in research

    Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation.

    Get PDF
    Both adjuvants and focal ablation can alter the local innate immune system and trigger a highly effective systemic response. Our goal is to determine the impact of these treatments on directly treated and distant disease and the mechanisms for the enhanced response obtained by combinatorial treatments. Methods: We combined RNA-sequencing, flow cytometry and TCR-sequencing to dissect the impact of immunotherapy and of immunotherapy combined with ablation on local and systemic immune components. Results: With administration of a toll-like receptor agonist agonist (CpG) alone or CpG combined with same-site ablation, we found dramatic differences between the local and distant tumor environments, where the directly treated tumors were skewed to high expression of F4/80, Cd11b and Tnf and the distant tumors to enhanced Cd11c, Cd3 and Ifng. When ablation was added to immunotherapy, 100% (n=20/20) of directly treated tumors and 90% (n=18/20) of distant tumors were responsive. Comparing the combined ablation-immunotherapy treatment to immunotherapy alone, we find three major mechanistic differences. First, while ablation alone enhanced intratumoral antigen cross-presentation (up to ~8% of CD45+ cells), systemic cross-presentation of tumor antigen remained low. Combining same-site ablation with CpG amplified cross-presentation in the draining lymph node (~16% of CD45+ cells) compared to the ablation-only (~0.1% of CD45+ cells) and immunotherapy-only cohorts (~10% of CD45+ cells). Macrophages and DCs process and present this antigen to CD8+ T-cells, increasing the number of unique T-cell receptor rearrangements in distant tumors. Second, type I interferon (IFN) release from tumor cells increased with the ablation-immunotherapy treatment as compared with ablation or immunotherapy alone. Type I IFN release is synergistic with toll-like receptor activation in enhancing cytokine and chemokine expression. Expression of genes associated with T-cell activation and stimulation (Eomes, Prf1 and Icos) was 27, 56 and 89-fold higher with ablation-immunotherapy treatment as compared to the no-treatment controls (and 12, 32 and 60-fold higher for immunotherapy-only treatment as compared to the no-treatment controls). Third, we found that the ablation-immunotherapy treatment polarized macrophages and dendritic cells towards a CD169 subset systemically, where CD169+ macrophages are an IFN-enhanced subpopulation associated with dead-cell antigen presentation. Conclusion: While the local and distant responses are distinct, CpG combined with ablative focal therapy drives a highly effective systemic immune response

    Differential phenotypes of memory CD4 and CD8 T cells in the spleen and peripheral tissues following immunostimulatory therapy.

    Get PDF
    BACKGROUND: Studies assessing immune parameters typically utilize human PBMCs or murine splenocytes to generate data that is interpreted as representative of immune status. Using splenocytes, we have shown memory CD4-T cells that expand following systemic immunostimulatory therapies undergo rapid IFNg-mediated activation induced cell death (AICD) resulting in a net loss of total CD4-T cells which correlates with elevated PD-1 expression. This is in contrast to CD8-T cells which expand with minimal PD-1 upregulation and apoptosis. In this study we expand upon our previous work by evaluating CD4 and CD8-T cell phenotype and distribution in peripheral organs which are more representative of immune responses occurring at metastatic sites following immunotherapy. METHODS: Phenotypic assessment of T cells in both lymphoid (spleen and LN) as well as peripheral organs (liver and lungs) in control and immunotherapy treated mice was performed to survey the impact of location on memory phenotype and activation marker status. Peripheral blood from patients undergoing systemic high dose IL-2 was also assessed for expression of PD-1 and memory phenotype. RESULTS: Here we reveal that, similar to what occurs in the spleen and lymph nodes, CD4-T cell numbers decreased while CD8-T cells expanded at these peripheral sites. In contrast to having differential expression of PD-1 as occurs in the spleen, both CD4 and CD8-T cells had significantly elevated levels of PD-1 in both the liver and lungs. Further analysis correlated PD-1 expression to CD62L CONCLUSIONS: These data highlight PD-1 expressing and/or T TRIAL REGISTRATION: ClinicalTrials.gov NCT01416831. Registered August 12, 2011

    ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer.

    Get PDF
    The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa

    Use of a Single Hybrid Imaging Agent for Integration of Target Validation with In Vivo and Ex Vivo Imaging of Mouse Tumor Lesions Resembling Human DCIS

    Get PDF
    Screening of biomarker expression levels in tumor biopsy samples not only provides an assessment of prognostic and predictive factors, but may also be used for selection of biomarker-specific imaging strategies. To assess the feasibility of using a biopsy specimen for a personalized selection of an imaging agent, the chemokine receptor 4 (CXCR4) was used as a reference biomarker. Methods: A hybrid CXCR4 targeting peptide (MSAP-Ac-TZ14011) containing a fluorescent dye and a chelate for radioactive labeling was used to directly compare initial flow cytometry–based target validation in fresh tumor tissue to inin vivovivo single photon emission computed tomography (SPECT) imaging and inin vivovivo and exex vivovivo fluorescence imaging. Results: Flow cytometric analysis of mouse tumor derived cell suspensions enabled discrimination between 4T1 control tumor lesions (with low levels of CXCR4 expression) and CXCR4 positive early, intermediate and late stage MIN-O lesions based on their CXCR4 expression levels; CXCR4basal^{basal}, CXCR4+^+ and CXCR4++^{++} cell populations could be accurately discriminated. Mean fluorescent intensity ratios between expression in MIN-O and 4T1 tissue found with flow cytometry were comparable to ratios obtained with in vivo SPECT/CT and fluorescence imaging, ex vivo fluorescence evaluation and standard immunohistochemistry. Conclusion: The hybrid nature of a targeting imaging agent like MSAP-Ac-TZ14011 enables integration of target selection, in vivo imaging and ex vivo validation using a single agent. The use of biopsy tissue for biomarker screening can readily be expanded to other targeting hybrid imaging agents and can possibly help increase the clinical applicability of tumor-specific imaging approaches
    corecore