17 research outputs found
Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645.
We report a detailed description of the energy migration dynamics in the phycocyanin 645 (PC645) antenna complex from the photosynthetic alga Chroomonas CCMP270. Many of the cryptophyceae are known to populate greater depths than most other algal families, having developed a 99.5% efficient light-harvesting system. In this study, we used femtosecond time-resolved spectroscopy and global analysis to characterize the excited-state dynamics of PC645. Several different pump colors were selected to excite different fractions of the four phycobiliprotein pairs present in the complex. Measurements were also performed at cryogenic temperature to enhance spectral resolution and selectively promote downhill energy transfers. Upon excitation of the highest-energy bilins (dihydrobiliverdins), energy is transferred from the core of the complex to the periphery within 0.82 ps. Four bilins (mesobiliverdin (MBV) A/B and phycocyanobilins (PCB) 158C/D), which are responsible for the central band of the absorption spectrum, show concerted spectral dynamics. These chromophores show a biphasic decay with lifetimes of 0.6 ps (MBV) and 5-7 ps (PCB 158) to the lowest bilin pair (PCB 82C/D) absorbing around 650-657 nm. Within this lifetime of several picoseconds, the excitations reach the PCB 82 bilins on the two poles at the smaller sides of PC645. A slow 44-46 ps energy transfer step to the lowest-energy PCB 82 bilin concludes the dynamics. © 2011 Biophysical Society
Excitation Dynamics in Phycoerythrin 545: Modeling of Steady-State Spectra and Transient Absorption with Modified Redfield Theory
We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex
Phycocyanin Sensitizes both Photosystem I and Photosystem II in Cryptophyte Chroomonas CCMP270 Cells
This article presents an investigation of the energy migration dynamics in intact cells of the unicellular photosynthetic cryptophyte Chroomonas CCMP270 by steady-state and time-resolved fluorescence measurements. By kinetic modeling of the fluorescence data on chlorophyll and phycocyanin 645 excitation (at 400 and 582 nm respectively), it has been possible to show the excited state energy distribution in the photosynthetic antenna of this alga. Excitation energy from phycocyanin 645 is distributed nearly equally between photosystem I and photosystem II with very high efficiency on a 100-ps timescale. The excitation energy trapping times for both photosystem I (∼30 ps) and photosystem I (200 and ∼540 ps) correspond well to those obtained from experiments on isolated photosystems. The results are compared with previous results for another cryptophyte species, Rhodomonas CS24, and suggest a similar membrane organization for the cryptophytes with the phycobiliproteins tightly packed in the thylakoid lumen around the periphery of the photosystems
Association of chlorophyll a/c2 complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c2 proteins were found. The most common complexes have Chl a/c2 complexes at both sides of the PSI core monomer and have dimensions of about 17×24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI–LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6–8 monomers of Chl a/c2 light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c2 proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c2 proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.